Mid-West University

Examinations Management Office

End-Semester Examinations -2080

Bachelor level / B.E. Civil / 2nd Semester

Time: 3 hours

Full Marks: 50

Pass Marks: 25

Subject: Engineering Mathematics-II (SH421/SH102)

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.
- 1. a. (i) If $u = tan(y + ax) (y ax)^{3/2}$, then show that; $\frac{\partial^2 u}{\partial x^2} = a^2 \frac{\partial^2 u}{\partial x^2}$
 - (ii) Find the volume of the solid bounded by the surface z = 0, $x^2 + y^2 = 1$, x + y + z = 3. (2+3)
 - b. (i) Find the minimum value of $x^2 + xy + y^2 + 3z^2$ subject to the condition x + 2y + 4z = 60.
 - (ii) Evaluate $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy \, dxdy$ by changing the order of the integration. (2+3)
- a. (i) Find the equation of the line through (1,2,-1) and perpendicular to the lines \$\frac{x}{1} = \frac{y}{0} = \frac{z}{-1}\$ and \$\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\$.
 (ii) Define the convergence and divergence of the series. Find the interval and radius of the
 - (ii) Define the convergence and divergence of the series. Find the interval and radius of the convergence of the power series $1 + \frac{1}{5}x + \frac{2}{5^2}x^2 + \frac{3}{5^3}x^3 + \cdots$ (2+3)
 - b. Defined the right circular cylinder. Find the equation of right circular cylinder having for its base the circle $x^2 + y^2 + z^2 = 9$, x y + z = 3. (5)
- 3. a. (i) Define directional derivative of a function f in the direction of \vec{a} . Find the directional derivative of a function $f = x^2 y^2 + 2z^2$ at the point A(1, 2, 3) in the direction of $\vec{a} = \vec{i} + \vec{j} + \vec{k}$.
 - (ii) Test the series for convergence by root test $\sum_{n=1}^{\infty} \frac{(-1)^n (x-3)^n}{n+1}$. (2+3)
 - b. Proved that the lines $\frac{x}{4} = \frac{y+1}{3} = \frac{z-2}{2}$ and 5x 2y 3z + 6 = x 3y + 2z 3 = 0 are coplanar. Also find their point of intersection and equation of plane in which they lie. (5)
- 4. a. (i) If $\vec{r} = \vec{a}e^{nt} + \vec{b}e^{-nt}$, where $\vec{a} \& \vec{b}$ are constant vectors, show that: $\frac{d^2\vec{r}}{dt^2} n^2\vec{r} = 0$.
 - (ii) Solve the differential equation $\frac{dy}{dx} = \frac{y}{x} + tan \frac{y}{x}$. (2+3)
 - b. Define the Bernoulli's differential equation. Solve ; $\frac{dy}{dx} + \frac{x}{1-x^2} y = x\sqrt{y}$. (5)
- 5. a. Defined the Legendre's polynomial. Prove that $P_n(x) = \sum_{r=0}^n \frac{(-1)^r (2n-r)! x^{n-2r}}{2^n r! (n-r)! (n-2r)!}$ (1+4)
 - b. (i) If $\frac{d^2\vec{r}}{dt^2} = 6t\vec{i} 12t^2\vec{j} + \vec{k}$ then show that: $\vec{r}'(0) = \vec{i} + 2\vec{j} 3\vec{k}$, $\vec{r}(0) = 7\vec{i} + \vec{j}$, find \vec{r} .
 - (ii) Solve; $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 5y = 10sinx$. (2+3)

The End