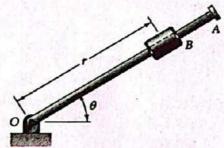
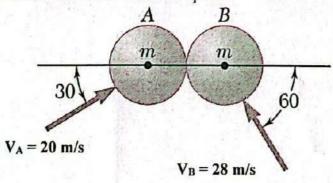
Mid-West University

Examinations Management Office

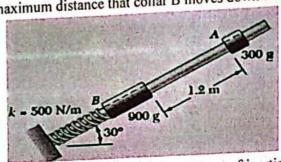
End-Semester Examinations -2080

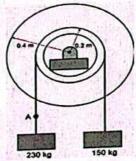

Bachelor level / B.E. Civil / 2nd Semester

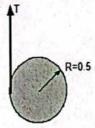
Time: 3 hours


Full Marks: 50 Pass Marks: 25

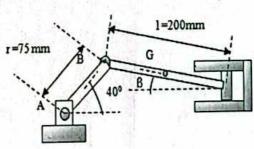
Subject: Applied Mechanics-II (CE421/CE103)


- Attempt all the questions.
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.
- a) List out the Scope and significance of Applied Mechanics in Engineering sector, 2+4 briefly explain. Derive the equation of tangential and normal components of motion.
 - b) Rotation of the arm about O is defined by $q = 0.15t^2$ where q is in radians and t in seconds. Collar B slides along the arm such that $r = 0.9 0.12t^2$ where r is in meters. After the arm has rotated through 30° , determine
 - i. the total velocity of the collar,
 - ii. the total acceleration of the collar, and
 - iii. the relative acceleration of the collar with respect to the arm


- 2. a) Starting from x = 0 with no initial velocity, a particle is given an acceleration $a = \sqrt{v^2 + 49}$, where a and v are expressed in m/sec² and m/sec respectively. Determine;
 - i. The position of the particle when V = 24 m/sec.
 - ii. The speed of the particle when X = 40 m.
 - b) The magnitude and direction of the velocities of two identical smooth balls before they strike each other are as shown in figure. Assuming e = 0.80, Determine the magnitude and direction of the velocity of each balls after the impact. How much K.E. will be lost due to the impact?


- a) A 300 g collar A is released from rest slides down a frictionless rod, and strikes a 900 g. collar B which is at rest and supported by a spring of constant 500N/m. Knowing 3. the velocity of collar A is zero immediately after impact,
 - i) Determine the co-efficient of restitution between the two collars,
 - ii) Energy lost during impact,
 - iii) the maximum distance that collar B moves down along the rod after impact

Each of the pulleys shown has a mass moment of inertia of 20 kg m² and is initially at rest. The outside radius is 0.4 m and the inner radius is 0.2 m. Determine (a) the angular acceleration of each pulley, (b) the angular velocity of each pulley after point A on the cord has moved 3 m.



- A cord is wrapped around a homogeneous disk of radius r = 0.5m and mass m = 15kg. 5 4. if the cord is pulled upward with a torque T of magnitude 180N, determine
 - The acceleration of the center of the disk
 - Angular acceleration of disk ii.
 - The acceleration of cord. iii.

5

- b) Explain D'Alembert's principle and prove that rate of change of angular momentum of force acting at the same points.
- In the engine system shown, the Crank AB has a constant angular velocity of 2500 rpm. 5. For the Crank position indicated, determine;
 - The angular velocity of the connecting rod BD.
 - The velocity of the piston P.
 - iii) The angular acceleration of rod BD

C - Applied mederic - 17 The End