Mid-West University

Examinations Management Office

End Semester Examinations -2080

Bachelor level / B.E. Computer / 2nd Semester

Time: 3 hours

Full Marks: 50 Pass Marks: 25

Subject: Engineering Mathematics-II (SH421/SH503)

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
 - Candidates are required to answer the questions in their own words as far as possible.
- 1 a. i. State and prove the Euler's theorem. [2]
 - ii. Find the extreme value for the function $x^2 + y^2 + z^2$ under the condition x + y + z = 3a. [3]
 - b. i. If $u = \log \frac{x^2 + y^2}{x + y}$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$. [3]
 - ii. Evaluate $\iint_V dxdydz$ over the region bounded by the planes x = 0, y = 0, z = 0, y = 8 and cylinder $x^2 + y^2 = 9$. [2]
- i. Evaluate $\int_0^\infty \int_0^x x e^{\frac{-x^2}{y}} dxdy$ by changing the order of integration. [3]
 - ii. Find, by double integration, the area bounded by the curves $x^2 + y^2 = a^2$ and line
 - x + y = a in the first quadrant. [3]
 - b. i. Find the distance of the point (1, -2, 3) from the plane x y + z = 5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$. [2]
 - ii. Find the magnitude and the equation of shortest distance between the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$. [4]

- 3 a. i. Find the equation of right circular cylinder of radius 2 whose axis is the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$. [3]
 - ii. Prove that the lines $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and $\frac{x}{1} = \frac{y-7}{-3} = \frac{z+7}{2}$ are coplanar. Find the equation of plane containing them. [3]
- b. State and prove the Rodrigue's Formula. [5]
- 4 a. i. Solve y'' + xy' + y = 0 by the power series method. [3]
 - ii. Prove that $J_{\frac{3}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} \cos x \right)$.
 - b. i. Find 'p' such that the vectors $2\vec{i} \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} + 3\vec{k}$ and $3\vec{i} + p\vec{j} + 5\vec{k}$ are coplanar. [2]
 - ii. Find the set of the reciprocal system to the set of vectors $2\vec{i} 3\vec{j} + 4\vec{k}$, $\vec{i} + 2\vec{j} \vec{k}$, and $3\vec{i} \vec{i} + 2\vec{k}$.
- 5 a. Find the directional derivatives of $\emptyset(x, y, z) = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction $2\vec{i} \vec{j} 2\vec{k}$. [3]
 - b. Find the radius of convergence and interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-3)^n (x)^n}{\sqrt{n+1}}$. [4]