Mid-West University

Examinations Management Office

Final Examinations-2079

Master level/M.Sc. Physics /2nd Semester

Time: 3 hours

Subject: Mathematical Physics (PHY551)

Full Marks: 37.50

Pass Marks: 18.75

- Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.
- . 1. Define analytic function. State and prove necessary and sufficient conditions for the Cauchy-[10] Riemann condition of analyticity. Also, express the Cauchy-Riemann equation in polar form.
 - a) Find the Laurent series expansion of f(z) analytic function.

[5]

b) Define the singularity of a function. Describe various types of singularities.

[5]

2. What do you mean by Normal distribution? Find the moment-generating function of Normal [10] distribution. Also, find the mean and variance of Normal distribution using the moment generating function. A data from an experiment is

X	1	1.2	1.4	1.6	2	1.8	1.9	2.2	2
t	0	1	2	3	4	5	6	7	R

Find the standard error of data Y. And obtain the linear fit of the plot Y and t.

3. Give the concept of interpolation. Derive the interpolation formula. Also derive the necessary error formula.

[5]

4. What are integral equations? Define the Neumann series and find the Neuman series of $\emptyset(x) = x + \frac{1}{2} \int_{-1}^{1} (t - x) \emptyset(t) dt.$

[5]

Transfer the equation $u(x) = x + \int_0^x xyu(y)dy$ into differential equation. Also, discuss Wiener-Hopf technique.

[5]

Integrate by the method of residue $\int_0^\infty \frac{dx}{1+x^3}$

[5]

Find mean and variance of binomial distribution using moment generating function. OR

[2.5]

Derive Simpson's rule for integration.

[2.5]

THE END