Mid-West University

Examinations Management Office

End Semester Examinations-2080

Master level/ M.Sc.(Physics)/2nd Semester

Time: 3 hours

Full Marks: 37.5 Pass Marks: 18.75

Subject: Mathematical Physics II (PHY551)

Candidates are required to give their answer in their own words as far as Practicable. The figures in the margin indicate full marks.

Attempt all the questions:

order four. [5]

- 1. What do you mean by the singularity of a function? Describe various types of singularities. Evaluate by the method of residue $I = \int_0^{2\pi} \frac{\cos^2\theta d\theta}{a + b\cos\theta} \ a > b > 0$. [10]
- 2. Define Binomial, Normal, and Poisson distributions separately. How are they related to each other? Explain precisely. [10]

OR

- What do you mean by student t-distribution? Derive its probability density function. [5]
- b) Define confidence interval. Following are the random data from a population that has gauss normal distribution,

5.69

8.74

2.90

6.18 4.95 7.12

Determine 90% and 95% confidence intervals for the population mean. [5]

- 3. Prove Cauchy's integral formula. Evaluate using Cauchy's integral formula $\int_C \frac{dz}{z(z+2)}$ where C is a circle |z| = 1. [5]
- 4. What are integral equations? Explain the separable kernel of the Fredholm integral equation of the second kind. [5]

OR

Discuss Integral equations in Dispersion theory with an appropriate example. [5]

- 5. Describe the Runge-Kutta method to solve the first-order differential equation. Given $\frac{dy}{dx} = x + y^2$ y(0) = 1, find y(0.2), when x = 0.1, using Runge-Kutta method of
- 6. What do you mean by covariance and co-relation? Prove that the value of co-relation lies between -1 to +1. [2.5]

The End