Mid-West University **Examinations Management Office**

Chance Exam-2082

M.Ed. Level / III Semester

Sub: Complex Variable and Numerical Analysis (MATH535)

Roll	No	١.								_	
		•	••	••	••	••	••	•	•	•	e

Group 'A'

 $10 \times 1 = 10$

Tick (\checkmark) the Best Answer.

- 1. Real part of the complex number $f(z) = \frac{1}{1-z}$ is equals to
 - a) $\frac{1-x}{(1-x)^2+y^2}$

b) $\frac{1+x^2}{(1-x)^2+y^2}$ d) $\frac{1}{(1-y)^2-x^2}$

- 2. Which of the followings is true?
 - (a) Differentiability does not imply continuity
 - (b) Differentiability implies continuity
 - (c) Continuity implies differentiability
 - (d) There is no relation between continuity and differentiability.
- 3. If a sequence of functions $f_n(z)$ converges at every point of D then which is correct?
 - a) $f_n(z)$ converges uniformly
 - b) $f_n(z)$ converges absolutist
 - c) $f_n(z)$ may or may not converges uniformly
 - d) Both (b) and (c)
- 4. Every absolutely convergent series is ...
 - a) Convergent conditionally
 - b) Convergent
 - c) Convergent uniformly
 - d) Divergent

- 5. If f(z) is analytic within and on the boundary C of a simply connected region R and z_0 is any point within C then $f(z_0)$ is given by
 - a) $\frac{1}{2\pi i}\int \frac{f(z)}{(z-z_0)^2}$
 - b) $\frac{1}{2\pi i}\int \frac{f(z)}{(z-z_0)}$
 - c) $\frac{1}{2\pi} \int \frac{f(z)}{(z-z_0)^2}$
 - d) $\int \frac{f(z)}{(z-z_0)^2}$
- 6. In Cauchy-Gaursat's theorem, if f(z) is analytic within and on the closed contour C then the $\int f(z)dz$ is...
 - a) 0

c) Infinite

- d) None of the above
- 7. Cauchy integral formula is concerned with...
 - a) Annular region

b) Closed disk

c) Connected region

- d) Open disk
- 8. If f(z) is an analytic function whose real part is constant, then f(z) is...
 - a) function of z

b) function of x only

c) function of y only

- d) constant
- 9. A function which is analytic everywhere in a complex plane is known as...
 - a) Harmonic function

b) differentiable function

c) regular function

d) entire function

- 10. The converse of Cauchy- integral theorem is ...
 - a) Euler's theorem

b) Liouville's theorem

c) Morera's theorem

d) Goursat's theorem

Mid-West University

Examinations Management Office

Chance Exam-2082

Level: M.Ed. / III Semester

FM: 60

Time: 3 hrs.

PM: 30

Sub: Complex Variable and Numerical Analysis (MATH535)

Candidates are requested to give their answers in their own words as far as practicable.

Attempt All the Ouestions.

Group 'B'

 $6\times 5=30$

- 1. Construct the analytic function f(x), where $u = e^{-x}\{(x^2 y^2)\cos y + 2xy \sin y\}$.
- 2. Define with examples:
 - (i) Rectifiable arc.
 - (ii) Limit of a complex number z.
- 3. If a function f(z) is analytic within and on a closed contour C. If z_0 be any point within C, then prove that $f'(z) = \frac{1}{2\pi i} \int \frac{f(z)}{(z-z_0)^2} dz$.

Or

Show that the series $\sum Z_n = \frac{n}{n+1}$ is not convergent.

- 4. Let f(z) be an analytic and $f'(z) \neq 0$ in a region R. Then the mapping w = f(z) is conformal at all points of R. Prove it.
- 5. Using Newton's backward difference formula, construct an interpolating polynomial of degree 3 for the data: f(-0.75) = -0.0718125, f(-0.5) = -0.02475, f(-0.25) = 0.3349375, f(0) = 1.10100. Hence find $f(-\frac{1}{3})$.

6. State and prove Cauchy's Residue Theorem.

Or

If f(z) has a pole of order m at $z = z_0$ then the function $\emptyset(z) = (z - z_0)^m$. f(z) has a removable singularity at z_0 . Prove it.

Group 'C'

 $2 \times 10 = 20$

- 7. State and prove Laurent's series for any analytic function f(z).
- 8. If the function f(z) is analytic at all points interior to (within) and on a simple closed contour C then $\int f(z)dz = 0$.

Or

State Cauchy-Riemann equation and prove it.

THE END