Mid-West University

Examinations Management Office

End Semester Exam-2082

Level: B.Ed. / V Semester

FM: 60

Time: 3 hrs

PM: 30

Sub: Basic Abstract Algebra (MATH453)

Candidates are requested to give their answers in their own words as far as practicable.

Attempt All the Questions.

Group 'B'

 $6 \times 5 = 30$

- 1. Define subgroup with example. Also show that the set {1, -1} is a subgroup of a group {1, -1, i, -i} with multiplication operation.
- 2. Prove that, every group has a unique identity element.
- 3. State and prove Lagrange's Theorem.

Or

Show that if every element of the group G is its own inverse, then G is abelian.

- 4. If R and S are two subgroup of a group G, then show that $R \cap S$ are also subgroup.
- 5. If (G, *) is a group and H is a non-empty subset of G. Then (H, *) is a subgroup of G if and only if $a * b^{-1} \in H$, for all $a, b \in H$.
- 6. A non-empty subset S of a ring R is a subring of R if and only if $a, b \in S$ implies (i) $a b \in S$ (ii) $ab \in S$.

Or

Define:

- a) Left ideal and right ideal.
- b) Prime ideal and maximal ideal.
- c) Ring with zero divisors.

7. (a) Let $\emptyset: G \to \overline{G}$ be a group homomorphism of G onto \overline{G} . If K is the kernel of \emptyset then prove that: $\overline{G} \cong \frac{G}{K}$.

(b) If $\emptyset: R \to \overline{R}$ is a ring homomorphism R onto \overline{R} , then prove that \emptyset is one to one if and only if $Ker_\emptyset = \{0\}$.

8. Define ring with complex numbers (C, +, .) and show the set of complex numbers with respect to both operations addition and multiplication forms a ring.

Or

- (a) If $f: A \to B$ and $g: B \to C$ are both one to one and onto mapping then prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- (b) Prove that: Every field is integral domain.

THE END

Mid-West University Examinations Management Office

End Semester Exam-2082

B.Ed. Level / V Semester

Sub: Basic Abstract Algebra (MATH453)

Roll !	No.		••••	••••	• • • • •
--------	-----	--	------	------	-----------

Group 'A'

 $10 \times 1 = 10$

Tick (✓) the Best Answer.

- 1. An algebraic structure to be a group if...
 - a) it satisfies closure, associative and commutative.
 - b) it satisfies closure, associative, commutative and existence of inverse element.
 - c) it satisfies closure, associative and commutative and existence of identity element.
 - d) it satisfies closure, associative, existence of identity element and existence of inverse element.
- 2. A number of subgroups of a group $G = \{1, \omega, \omega^2\}$ with multiplication operation...
 - a) 5

b) 6

c) 7

- d) 8
- 3. Every is unique factorization domain.
 - a) integral domain

- b) ring
- c) principle ideal domain
- d) commutative ring
- 4. Which is correct statement of Lagrange's Theorem?
 - a) The order of normal subgroup of a group is divisor of the order of the group.
 - b) The order of each subgroup of a group is divisor of the order of the group.

- c) The order of each finite subgroup of a group is divisor of the order of the group.
- d) The order of the left cosets and right cosets are equal.
- 5. Every subgroup of an abelian group is.....
 - a) abelian

b) normal

c) both (a) and (b)

- d) not group
- 6. Which statement is not correct for normalizer of an element of a group G?
 - a) N(a) is not a normal subgroup of G in general
 - b) N(e) = G; for ex = xe for all $x \in G$.
 - c) $N(a) \neq G$ iff G is abelian.
 - d) All of the above.
- 7. The order of the dihedral group D_4 is equals to.....
 - a) 4

b) 6

c) 8

- d) 10
- 8. If $a \equiv b \pmod{c}$ then which is the correct statement?
 - a) 'b' is dividend, 'c' is remainder and 'a' is divisor.
 - b) 'a' is dividend, 'c' is remainder and 'b' is divisor.
 - c) 'a' is dividend, 'b' is remainder and 'c' is divisor.
 - d) None of them.
- 9. A fuction f(x) is said to be bijective function if...
 - a) f(x) is one to one.
- b) f(x) is onto.
- c) (a) and (b) both.

- d) None of them.
- 10. Which is incorrect statement?
 - a) The ring $(Z, +, \times)$ of integers is an integral domains.
 - b) The ring $(E, +, \times)$ of even integers is an integral domains.
 - c) The ring $(R, +, \times)$ of real numbers is ring.
 - d) The ring $(C, +, \times)$ of complex numbers is division ring.