Mid-West University

Examinations Management Office

End Semester Exam-2082

B.Ed. Level / V Semester

Sub: Fundamentals of Real Analysis (MATH451)

D-II	BT_	
коп	NO.	•••••

Group 'A'

 $10 \times 1 = 10$

Tick (✓) the Best Answer.

- 1. Which of the following sets is bounded?
 - (a) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$

(b) $\left\{\frac{(-1)^n}{n}: n \in \mathbb{N}\right\}$

(c) $\{x: a < x < b\}$

- (d) All of the above
- 2. Which of the following set contains it's supremum?
 - $(a) \{x: a \le x < b\}$

(b) $\{x: a < x < b\}$

 $(c) \{x: a < x \le b\}$

- (d) $\{x: x > 0 \in R\}$
- 3. The set $\{x: 0 \le x \le 1\}$ is ...
 - (a) an open set

- (b) a closed set
- (c) neither open nor closed
- (d) all of the above
- 4. A set N is called a neighborhood of a point x if for any $\varepsilon > 0$.
 - (a) $(x \varepsilon, x + \varepsilon) \subset N$
- (b) $N \subset (x \varepsilon, x + \varepsilon)$
- (c) $[x \varepsilon, x + \varepsilon] \subset N$
- (d) $N \subset [x \varepsilon, x + \varepsilon]$
- 5. Which of the following is not a bounded sequence?
 - (a) $(1+(-1)^n)$

(b) $\langle n^2 \rangle$

(c) $\langle (-1)^n + \frac{1}{n} \rangle$

(d) $\left\langle \frac{\left\langle (-1)^n\right\rangle}{(n-1)!}\right\rangle$

- 6. A sequence $\langle u_n \rangle$ is called monotonic increasing if,
- (a) $u_{n+1} \ge u_n \ \forall \ n \in N$
- (b) $u_n \ge u_{n+1} \ \forall \ n \in N$
- (c) $u_{n+1} > u_n \ \forall \ n \in \mathbb{N}$
- (d) $u_n > u_{n+1} \ \forall \ n \in N$
- 7. If $\sum u_n$ is a positive term series and $\lim_{x \to \infty} n \left[\frac{u_n}{u_{n+1}} 1 \right] = L$ then.
 - (a) Comparison test

(b) Cauchy's root test

(c) Raabe's test

- (d) D'Alemberts ratio test
- 8. The series $\sum \frac{1}{nP}$ is convergent if
 - (a) p = 1

(b) p < 1.

(c) $p \leq 1$

- (d) p > 1
- 9. If f is continuous and one-one on an interval I, which of the following is true?
 - (a) F is constant on I
 - (b) F is strictly monotonic on I
 - (c) F is strictly increasing on I
 - (d) F is strictly decreasing on I
- 10. The value of 'C' of Lagrange's mean value theorem for f(x)=x(x-1) in [1,2] is given by,
 - (a) $\frac{3}{4}$

(b) $\frac{5}{4}$

(c) $\frac{7}{4}$

(d) $\frac{1}{6}$

Mid-West University

Examinations Management Office

End Semester Exam-2082

Level: B.Ed. / V Semester FM: 60

Time: 3 hrs PM: 30

Sub: Fundamentals of Real Analysis (MATH451)

Candidates are requested to give their answers in their own words as far as practicable.

Attempt All the Questions.

Group 'B'

 $6 \times 5 = 30$

- 1. Supremum and infimum of a set S if exist are unique.
- 2. Define closed set with example. The union of an arbitrary family of open sets is open.
- 3. Define boundedness of sequence. Every bounded sequence has at least one limit point.

Or

A monotonic sequence $\langle u_n \rangle$ is convergent iff it is bounded.

- 4. Show that the series. $\frac{n^{n^2}}{(n+1)^{n^2}}$ is convergent by Cauchy's root test.
- 5. Define limit. Use ε , δ definition Show that $\lim_{x \to 5} (2x + 10) = 20$.
- 6. If f is derivable at g(x) & g is derivable at x then (fog) is derivable at x and (fog)'(x)=f'(g(x)) g'(x).

Or

Define derivability at a point. If f is derivable at x and is oneone on some nbd of x then the inverse of f is derivable at f(x)and $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$ provided $f'(x) \neq 0$.

Group 'C'

 $2 \times 10 = 20$

- 7. (a) The open interval]01[is uncountable.
 - (b) A sequence $\{a_n\}$ converge to a real number L iff $\lim a_n = \overline{\lim a_n} = L$
- 8. Show that the series.

$$1 + \frac{2^2}{3^2} + \frac{2^2 \cdot 4^2}{3^2 \cdot 5^2} + \frac{2^2 \cdot 4^2 \cdot 6^2}{3^2 \cdot 5^2 \cdot 7^2} + \dots + \frac{0^2 \cdot 2^2 \cdot 4^2 \cdot \dots \cdot (2n-2)^2}{1^2 \cdot 3^2 \cdot 5^2 \cdot \dots \cdot (2n-1)^2}$$
 is convergent by Gauss test.

Or

State and prove Darboux theorem.

THE END