Mid-West University

Examinations Management Office

End Semester Exam-2082

B.Ed. Level / III Semester

Sub: Graph Theory (MATH435/336)

Roll No.

Group 'A'

 $10 \times 1 = 10$

Tick (✓) the Best Answer.

- 1. The total number of edges in a complete graph is
 - a. K₁

b. *K*₂

c. K₃

- d. K_n
- 2. The multigraph G has....
 - a. a trial containing all edges of G
 - b. a trial containing an edges of G
 - c. no trial containing all edges of G
 - d. no trial containing an edges of G
- 3. If G is a tree with n vertices, then it has....
 - a. n edges.

b. n+1 edges

c. n + 2 edges

- d. n-1 edges
- 4. If G is a connected planar graph with v vertices and e edges where
 - $v \geq 3$, then....
 - a. $e \leq 3v 6$

b. e = 3v - 6

c. $e \ge 3v - 6$

- $d. e \leq 3v + 6$
- 5. The degree of a vertex of G is denoted by....
 - a. d(G)

b. d(v)

c. v(G)

d. n(v)

- 6. An edge e of G is a bridge if and only if...
 - a. e does lie on any cycle of G.
 - b. e does not lie on any cycle of G.
 - c. e does lie on any circuit of G.
 - d. e does not lie on any circuit of G.
- 7. Every planar Map M is....
 - a. Two colourable
 - b. Three colourable
 - c. Four colourable
 - d. Five colourable
- 8. A digraph D is strongly connected if and only if....
 - a. It has a closed directed spanning path
 - b. It has a open directed spanning path
 - c. It has a closed directed spanning trial
 - d. It has a open directed spanning path
- 9. A vertex v is said to be a cut-vertex of a graph G if
 - a. the graph G is connected
 - b. the graph G v is connected
 - c. the graph G is disconnected
 - d. the graph G v is disconnected
- 10. A complete graph K_n is plannar if and only if.....
 - a. $n \leq 2$

b. $n \leq 3$

c. $n \leq 4$

d. $n \leq 5$

Mid-West University

Examinations Management Office

End Semester Exam-2082

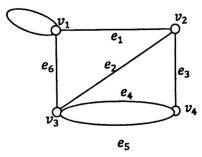
Level: B.Ed. / III Semester

FM: 60

Time: 3 hrs.

PM: 30

Sub: Graph Theory (MATH435/336)


Candidates are requested to give their answers in their own words as far as practicable.

Attempt All the Questions.

Group 'B'

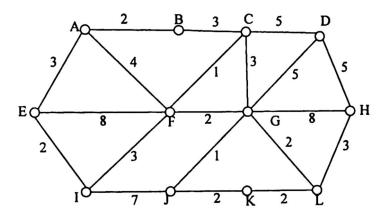
 $6\times 5=30$

1. Consider the multigraph G (V, E) in the figure below. Find the degree and parity (even or odd) of each vertex of G.

- 2. Explain about bipartite and complete bipartite graph with examples. Find the total number of edges in the complete graph K_n .
- 3. Define adjacency matrix. Draw the graph G whose adjacency matrix A(G) is

State and prove "Solution of Konigsberg Bridge Problem".

4. Define chromatic number. Let G be a graph, then prove that $\chi(G) = 2$ if and only if G is bipartite.


- 5. Prove that a digraph D is strongly connected if and only if it has a closed directed spanning path.
- 6. Prove that in any tree G, there are at least two vertices of degree 1.

Prove that a graph is connected if and only if it has subgroup that is a spanning tree.

Group 'C'

 $2 \times 10 = 20$

7. Explain the process to solve the shortest path problem. Consider the weighted graph in the figure below, find the shortest path from E to H.

8. Define planar graph, finite region and infinite region with examples. If G is a connected planar graph with |V| = v, |E| = e and r number of regions then prove that v - e + r = 2.

Or

Prove that a weakly connected digraph D with at least two vertices has a directed Euler trail iff D has two vertices u and v such that od(u) = id(u) + 1 and od(v) = od(v) + 1 and for other vertices p of D, od(p) = id(p). Furthermore, in this case the trail begins at u and ends at v.

THE END