Mid-West University Examinations Management Office

End Semester Exam-2082

-	-			* 7			
к	НИ	Level	•	v	Sen	าครา	er

Sub: Projective Geometry (MATH454)							
, .							
10×1=10							
$\sigma = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ in which \mathcal{I} has							
b) $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$							
d) $\mathcal{I} \simeq \mathcal{P} \times \mathcal{L}$							
Let a and b points includes the possibility that							
b) $a \neq b$							
d) $a > b$							
b) Extended plane							
d) Euclidean Plane							
The principle of duality holds in the class of							
b) Real Affine Plane							
d) Affine Plane							
e that ur point.							

- 6. If F is a field, then...
 - a) π_F is a projective plane
 - b) π_F is a affine plane
 - c) π_F is a pappian plane
 - d) π_F is a desagusian plane
- 7. Two triangle \triangle abc and \triangle a'b'c' is said to form a couple...
 - a) a, a', b, b', c and c' are concurrent on p
 - b) a, a', b, b', c and c' are parallel on p
 - c) a, a', b, b', c and c' are distinct on p
 - d) a, a', b, b', c and c' are at on p
- 8. The tactical configuration of four-point plane has form...
 - a) $(6_2, 4_3)$

b) (7_3)

c) $(4_3, 6_2)$

- $d)(9_3)$
- 9. Which of the following statements is true?
 - a) An affine plane contains a set of three non-collinear points
 - b) A Euclidean plane contains a set of three non-collinear points
 - c) A projective plane contains a set of three non-collinear points
 - d) An affine plane contains a set of four non-collinear points
- 10. A configuration is a plane $\sigma = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ in which $\mathcal{P} \cup \mathcal{L} \dots$
 - a) $\mathcal{P} \cup \mathcal{L}$ is finite

b) $\mathcal{P} \cup \mathcal{L}$ is infinite

c) $\mathcal{P} \cap \mathcal{L}$ is finite

d) $\mathcal{P} \cap \mathcal{L}$ is infinite

Mid-West University

Examinations Management Office

End Semester Exam-2082

Level: B.Ed. / V Semester

FM: 60

Time: 3 hrs

PM: 30

Sub: Projective Geometry (MATH454)

Candidates are requested to give their answers in their own words as far as practicable.

Attempt All the Questions.

Group 'B'

 $6 \times 5 = 30$

- 1. Define incidence structure and incidence relation. Let $\sigma = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ with $\mathcal{P} = \{c, l, b\}$, $\mathcal{L} = \{C, L, B\}$, then justify why incidence structure is the Cartesian product of \mathcal{P} and \mathcal{L} .
- 2. Prove that any plane is isomorphic to a plane whose lines are sets of points.
- 3. Construct an incidence structure of four-point plane with its incidence table and tactical form.

Or

State 'Desargues Triangle Theorem' and explain on couple, central and axial with figures.

- 4. If σ is a tactical configuration with form (m_n) , with $m = n^2 n + 1$ and $n \ge 3$. Then prove that σ is a projective plane.
- 5. Define triangle in π_c . Prove that: $|f|f^{-1} = |A|F$.
- 6. Explain affine plane with example. Prove that the points $[x_1, x_2, x_3]$, $[y_1, y_2, y_3]$ and $[z_1, z_2, z_3]$ in π_R are collinear iff $\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix} = 0$

 $|z_1 \quad z_2 \quad z_3|$

Or

Verify that the real projective plane π_R is projective plane.

Group 'C'

 $2 \times 10 = 20$

- 7. Define isomorphism and isomorphic of planes with example. Prove that any plane is isomorphic to a plane whose lines are sets of points.
- 8. Prove that if D is a division ring, then prove that is a desarguesian plane.

Or

Explain the Pappus line of triples. Prove that if F is a field, then π_F is a Pappian plane.

THE END