Mid-West University

Examinations Management Office

Surkhet, Nepal

End Semester Examination-2082

Leve	ŀ	M	Fd	/ II	Sem	ester
LCVC	1.	IVI.	Lu.	/ 11		

Sub: Linear Algebra (MATH 525)

Jun. 2		
Roll No	G !! A !!	10
Tick (✓) the best answer.	Group "A"	$10\times 1=10$
1 4	functor appea V is called	subspace :

- 1. A non-empty subset W of vector space V is called subspace if ...
 - a. $v-w \in W \ \forall v, w \in W$
 - b. $v+w \in W \ \forall v,w \in W$
 - c. $v-w \in W$ and $c v \in W \ \forall v, w \in W$ and $c \in K$
 - d. All of the above
- 2. A set of vectors $V = \{v_1, v_2, v_3,...,v_n\}$ is called orthogonal if
 - a. $v_i . v_j = 0$ for i=j

b. $v_i . v_j = 0$ for $i \neq j$

c. $v_i \cdot v_j = 1$ for i=j

- d. $v_i . v_j = 1$ for $i \neq j$
- 3. A symmetric bilinear form always represents the
 - a. Square matrix

b. Symmetric matrix

c. Singular matrix

- d. Triangular matrix
- 4. A bilinear form g: $V \times V \rightarrow K$ is called skew symmetric if
 - a. g(v, w) = -g(w, v)

b. g(v, w) = g(w, v)

c. g(v, w) = 0

- d. g (v, w)= identity
- 5. Let $\phi: V \to W$ be a line map. Then (Ker ϕ) is ...
 - a. subspace of V

b. subspace of W

c. subset of image ϕ

- d. subspace of both V and W
- 6. Let V be a finite dimensional vector space over field K and A: $V \rightarrow V$ be an operator. Then for $\lambda \in K$, $v \in V$ is called eigenvector of A if ...
 - a. Av= A λ

b. $V = A \lambda$

c. Av= λ

d. Av= λv

- 7. The matrix $\begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$ is ...
 - a. singular matrix
 - c. triangular matrix

- b. symmetric matrix
- d. diagonal matrix
- 8. A set of vectors $\{v_1, v_2, \dots v_n\}$ is said to be the basis of V if ...
 - a. it generates V

b. it is linearly independent

c. it linearly dependent

- d. a and b both
- 9. Every unitary free module is ...
 - a. injective module

b. torsion module

c. projective module

- d. quotient module
- 10. If M is an R-module then which of the following is not true?
 - a. $r.0_{M} = 0_{M}$

- b. $0_R .m = 0_M$
- c. (-r) m= -(r m) = r (-m)
- $d. 0_R.m = 0_R$

End Semester Examination-2082

Level: M.Ed. / II Semester

FM: 60 PM: 30

Time: 3.00 hrs.

Attempt all the questions.

practicable.

Sub: Linear Algebra (MATH 525)

ii. There exists an R-module homomorphism h: $A_2 \rightarrow B$ with g h=IA₂

iii. The given sequence is isomorphic to the sequence $0 \rightarrow A_1 \rightarrow$ $A_1 \oplus A_2 \rightarrow A_2 \rightarrow 0$

Group "C"

7. Let $0 \rightarrow A_1 \rightarrow B \rightarrow A_2 \rightarrow 0$ be short exact sequence of R-module

i. There exists an R-module homomorphism k: $B \rightarrow A_1$ with k f=I A_1

homomorphisms f and g. Then the following conditions are equivalent:

Candidates are required to give their answers in their own words as far as

Group "B"

 $6 \times 5 = 30$

- 1. Define linear map, its kernel and image. Prove that the composition of two linear maps is also linear.
- 2. Define quadratic form and find the quadratic form associated with the matrix $C = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$
- 3. State and prove Spectral theorem.

Or

State and prove Sylvester theorem.

- 4. Find the eigenvalue and corresponding eigenvectors of the matrix $A = \begin{pmatrix} 2 & 4 \\ 5 & 3 \end{pmatrix}$
- 5. Prove that a matrix always represents a symmetric bilinear form if and only if it is symmetric matrix.
- 6. Show that the map $f: Z \rightarrow Z$ by f(x) = 2x is module homomorphism but not a ring homomorphism.

Or

Define the terms: Module, module homomorphism, exact sequence, free module and torsion module.

8. Define eigenvalue and eigenvector. Let V be finite dimensional vector space over field K and let A: $V \rightarrow V$ be an operator. Let $v_1, \ v_2, \ ..., v_m$ be eigenvectors of A with eigenvalues λ_1 , λ_2 , ..., λ_m respectively. Assume that these vectors are distinct $(\lambda_i \neq \lambda_j)$. Then show that $v_1, v_2, ..., v_m$ are linearly independent

Or

State and prove primary decomposition theorem.

THE END

 $2 \times 10 = 20$