Mid-West University

Examinations Management Office

End Semester Examinations 2081

Bachelor level/ B. Sc. / 8th Semester

Time: 3 hours

margin indicate full marks.

Subject: Quantum Mechanics (PHY481)

Full Marks: 100 Pass Marks: 50

Candidates are required to give their answer in their own words as far as Practicable. The figures in the

Group - A

1. Answer in short any EIGHT questions

[2x8 = 16]

- a. How is the Heisenberg's uncertainty principle used in chemistry?
- b. What is the wave function? Write its boundary condition.
- c. Differentiate between commutating and non-commutating operators.
- d. Photoelectric and Compton effect both arise due to the action of photon on electron but the two effects are not same. Explain?
- e. Establish the energy-momentum relation for a free particle.
- f. Show that rest mass of photon is zero.
- g. Why is uncertainty principle important for microscopic particles but insignificant in practical life?
- h. Why Schrodinger's wave equation is not valid for relativistic particles?
- i. Explain briefly Dirac delta function.
- j. Signify the quantum numbers associated with hydrogen atom in quantum mechanics problem.

Group – B

2. Answer in brief any SIX questions

[6x6=36]

- a. Describe with necessary theory Davisson and Germer's experiment for establishing wave nature of electron.
- b. Show that every function under Hermitian operator with different Eigen values is orthogonal?
- c. Explain the azimuthal component of wave function of hydrogen atom.
- **d.** State Ehrenfest's theorem and prove that $\langle \hat{p}_x \rangle = m \frac{d\langle x \rangle}{dt}$.
- e. What do you mean by linear harmonic oscillator? Explain its zero-point energy associated with linear harmonic oscillator.
- f. Explain the simultaneous measurability of observables.
- g. Show that $\int_{-\infty}^{\infty} \Psi_m^* \Psi_n dx = 0$.

Group - C

- 3. Explain the radial component of Schrodinger's wave equation of hydrogen atom. Explain the significance of the quantum number predicted by it. [9]
- 4. Derive an expression for the transmission and reflection coefficient of a particle through potential barrier of finite height and width.

OR

Starting from a particle oscillate simple harmonically then obtain the time dependent and time independent S.W.E. [9]

- 5. Show that $\frac{\partial P}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0$ where symbols are their usual meanings. [6]
- 6. Calculate the potential barrier for the α -particle emitted by Rn_{86}^{222} assuming effective nuclear radius $r_0 = 1.5A^{1/3}$ Fermi [length of side of cube = $9.08 \times 10^{-15} m$, mass of α particle = $4\times1.67\times10^{-27}kg$ [6]
- 7. Find the energy of a proton having de-Broglie wavelength 0.5fm.

For hydrogen atom, $\Psi_{210} = A[\exp{-r/2a_o}] \operatorname{rcos}\theta$. Find the value of coefficient A. [6]

- 8. Show that $[L_x, L_y] = i\hbar L_z$. [6]
- 9. Show that $(\Delta x)^2 = \langle (x \langle x \rangle)^2 \rangle = \langle x^2 \rangle \langle x \rangle^2$, where Δx be the uncertainty in position. [6]