## Mid-West University

# **Examinations Management Office**

Final Examinations -2081

Level: Bachelor level/B.Sc./4th Semester

F. M: 60

Time: 3hrs.

P. M: 30

Subject: Electromagnetism (PHY 341/441)

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

#### Group - A

## Attempt all long questions

[4x6 = 24]

- 1. Define divergence of a vector field with its physical meaning. Derive an expression for divergence of a vector of a vector field in Cartesian co-ordinates.
- 2. Define Displacement current and derive Maxwell's equation in final form. The electric field in air is given by,

$$\vec{E} = \rho t e^{-\rho - t} a_{\phi} V/m.$$
 Find  $\vec{B} \& \vec{J}$ 
OR

Explain the phenomenon of electromagnetic wave propagating in lossy dielectric medium and find the relation for intrinsic impedance in lossless dielectric medium and in free space.

- 3. What is relaxation time? Show that,  $\rho_V = \rho_{V_0} e^{-t/\tau}$ , Where symbol have usual meaning.
- 4. Show that the general expression for input impendence at any point on transmission line is,

$$Z_{in} = Z_0 \left[ \frac{Z_L + Z_0 tanhrl}{Z_0 + Z_1 tanhrl} \right]$$
, Where symbol have usual meaning.

# Group - B

# Attempt all numerical questions.

[6x4 = 24]

- 5. If  $\vec{A} = 2x^2z^2\hat{a}_x 2xy^2\hat{a}_y + 2x^2y^2\hat{a}_z$ . Find the value of curl  $\vec{A}$  at point (1,1,1).
- 6. A spherical charge distribution is given by,

$$\rho = \rho_0 (1 - \frac{r^2}{a^2})$$
  $r \le a \text{ and } \rho = 0, r > a.$ 

- a. Find the total amount of charge.
- b. Calculate the electric field inside and outside the charge distribution.
- 7. If  $\vec{J} = \frac{1}{r^3} (2\cos\theta \hat{a}_r + \sin\theta \hat{a}_\theta) A/m^2$ . Calculate the current passing through

- a. A hemispherical shell of radius 20cm,  $0 < \theta < \pi/2$ ,  $0 < \phi < 2\pi$ .
- b. A spherical shell of radius 10 cm.
- 8. Two straight wires are kept in air 2m apart carrying currents 80 A and 30 A in the same direction. Calculate the force between them and specify its nature.
- 9. The magnetic vector potential is given by  $\vec{A} = -\frac{\rho^2}{4} \hat{a}_z wb/m$ . Calculate the total magnetic flux crossing the surface  $= \pi/2 \le \rho \le 2m$ ,  $0 \le z \le 5m$ .

OR

A long solenoid of length 1m and radius of cross-spection 1.5cm has a five layers of windings of 850 turns each. If solenoid carries a current of 5A. Calculate the value of;

- a. Magnetic induction and
- b. Magnetic flux for a cross-section of the solenoid at the centre of the solenoid.
- 10. A Find the magnetic field due to a circular coil of radius 0.1m and having 200 turns at the centre of the coil when circulating current is 500 mA.

#### Group-C

Answer in brief any Six questions.

[6x2=12]

- 11. If  $\phi(x, y, z) = 3x^2 yz^2$ . Find grad  $\phi$  at point (1,2,-1).
- 12. Define electric dipole with its importance.
- 13. A dielectric is placed in the field of a point charge. Will there be polarization volume charge density?
- 14. State Biot-savart law and write its vecor form.
- 15. Explain about different energy losses in a transformer.
- 16. What is transmission line?
- 17. Differentiate between self-inductance and mutual Inductance.
- 18. Explain about Smith Chart.

#### THE END