Mid-West University

Examinations Management Office

Surkhet, Nepal

End Semester Examination-2080

Level: B.Ed. / V Semester

Sub: Projective Geometry (MATH 454)

Roll	No:	

Group 'A'

 $10 \times 1 = 10$

Tick (\checkmark) the best answers.

- 1. An incidence structure is a triple $\sigma=(\mathcal{P},\mathcal{L},\mathcal{I})$ in which \mathcal{P} and \mathcal{L} are sets then
 - a. $\mathcal{P} \cap \mathcal{L} = \emptyset$
 - b. $\mathcal{P} \cap \mathcal{L} = \emptyset$ and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$
 - c. $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{L}$
 - d. $\mathfrak{I}\supseteq \mathcal{P}\times \mathcal{L}$
- 2. We abbreviate $(10_3, 10_3)$ to...
 - a. (10_3)

b. $(3_{10}, 3_{10})$

 $c. (3_{10})$

- d. None of above
- 3. The tactical configuration of Four Point has form:
 - a. $(6_2, 4_3)$

b. (7_3)

 $c. (4_3, 6_2)$

- $d.(9_3)$
- 4. The set of all lines on a point p is also called ...
 - a. range p

b. concurrent lines

c. pencil p

- d. parallel Lines
- 5. The two lines L and M fails to meet means...
 - a. L and M always meet.
 - b. L and M determine a line.
 - c. L and M are parallel.
 - d. L and M are perpendicular.
- 6. The principle of duality holds in the class of ...
 - a. projective plane

b. real affine plane

c. plane

d. affine plane

- 7. The statement of Desargues's Triangle Theorem is ...
 - a. every central couple is axial.
 - b. some central couple is axial.
 - c. every couple is axial.
 - d. some couple is axial.
- 8. Which one of the followings is not the axiom of projective plane?
 - a. If L is a line, then there exists at least three points on L
 - b. If L is a line then there exists at least two points on L.
 - c. If L is a line then there exists at least one point not a L.
 - d. There is at least one line.
- 9. Two triangle Δabc and $\Delta a'b'c'$ is said to form a couple ...
 - a, a, a', b, b', c and c' are concurrent on p
 - b. a, a', b, b', c and c' are parallel on p
 - c. a, a', b, b', c and c' are distinct on p
 - d. a, a', b, b', c and c' are at on p
- 10. If F is a field, then
 - a. π_F is a Pappian plane.
- b. π_F is a affine plane.
- c. π_F is a projective plane.
- d. π_F is a Desarguisian plane

Mid-West University

Examinations Management Office

Surkhet, Nepal

End Semester Examination-2080

Level: B.Ed. / V Semester

Time: 3.00 hrs

FM: 60

PM: 30

Sub: Projective Geometry (MATH 454)

Candidates are required to give their answers in their own words as far as practicable.

Attempt All the Questions:

Group "B"

 $6 \times 5 = 30$

- 1. Define incidence structure with its incidence relation. Let $\mathcal{P} = \{e, f, g\}$, $\mathcal{L} = \{E, F, G\}$, then construct a incidence triangle σ .
- 2. Define projective plane. Prove that a projective plane contains a set of four points, no three of which are collinear.
- 3. Define isomorphism and isomorphic of planes. Any plane is isomorphic to a plane whose lines are sets of points.

Or

State and prove "Pascal's Theorem"

- 4. What is the difference between configuration and tactical configuration?

 Construct a Fano configuration with configuration table.
- 5. If σ is a tactical configuration with form (m_n) , with $m = n^2 n + 1$ and $n \ge 3$. Then prove that σ is a projective plane.
- 6. Define triangle in π_c . Prove that: $|f|f^{-1} = |A|F$.

Or

If Γ : $xAx^T = 0$ is a point conic, v is a vertex of Γ , and p is a point of Γ , then prove that Γ contains the range of pv.

Group "C"

 $2 \times 10 = 20$

- 7. State "Theorem of Pappus". If F is a field, then prove that π_F is a Pappian plane
- 8. Define Triangle in π_C . Prove that S is the cofactor matrix of P, so that $S = |P|(P^{-1})^T$.

Or

Define couple, axial and central. Prove that D is a division ring, then π_D is a Desaguesian plane.

THE END