Mid-West Undersity

Examinations Management Office

Surkhet, Nepal

End Semester Examination-2080

Level: B.Ed. /V Semester

of G.

b. Every subgroup of a cyclic group is cyclic.

Sub: Basic Abstract Algebra (MATH 453)

	Sub: Basic At	ostract Aigebra	(MAIN)	1433)	
R	oll No:				
		Group 'A'			$10 \times 1 = 10$
T	ick (\checkmark) the best answers.				
1. 1	The inverse element of an element $'-i$ of group $G = \{1, -1, i, -i\}$				
v	vith multiplication operation	on is			
	b1		c. I		d. –i
2. I	Let (G, ·), (H, *) be grou	ups. The map	φ : G	→ H is	s called a
	nomo- morphism from (C				
	$\phi(a \cdot b) = \phi(a) \cdot \phi(b)$				
	$\phi(a*b) = \phi(a)*\phi(b)$				
	$\phi(a \cdot b) = \phi(a) * \phi(b)$				
	$\phi(a * b) = \phi(a) \cdot \phi(b)$				
u.	$\frac{\varphi(a+b)-\varphi(a)\cdot\varphi(b)}{\varphi(a)}$,			
3. I	Let the set {0, 1, 2, 3, 4} fo	orms a group un	der addit	tion mod	lulo 5, then
ť	he inverse element of 3 is.	••••			
8	b. 2	c. 3		d. 4	
4. 7	The order cyclic group is the	he same as the	•••		100
a.	Order of its subgroup				200
Ъ.	. Order of its own normal	subgroup			
C.	Order of its generator				
d.	. All of the above				
5. V	Which one is the incorrect	statement of the	e followi	ngs:	
	The intersection of two				a subgroup

c. The identity of a subgroup is not the same as that of the group.
d. The inverse of an element of a subgroup is the same as the inverse of the same element considered as an element of the group.

- 6. Which one statement is not correct for normalizer of an element of a group G?
 - a. N(a) is not a normal subgroup of G in general
 - b. N(e) = G; for ex = xe for all $x \in G$.
 - c. $N(a) \neq G$ iff G is abelian.
 - d. All of the above.
- 7. Let (R, +, .) be a ring and I be a non-empty subset of R. Then I is called ideal of R if
 - a. $a, b \in I$ implies $a b \in I$ and $ra \in I$.
 - b. $a, b \in I$ implies $a b \notin I$ and $ar \in I$.
 - c. $a, b \in I$ implies $a b \in I$ and $ra \notin I$.
 - d. $a, b \in I$ implies $a b \in I$ and $ra \in I$ and $ar \in I$.
- 8. If a and b leave the same remainder when divided by n then,
 - a. $a \equiv b \pmod{a}$
 - b. $a \equiv b \pmod{b}$
 - c. $a \equiv b \pmod{n}$
 - d. None of them
- 9. Let (R; +, ·) be a ring and let S ⊆ R. Then (S; +, ·) is a subring of R if (and only if) S is non-empty and the following hold:
 - a. $a+b \in S$ for any $a,b \in S$
 - b. $a-b \in S$ for any $a,b \in S$
 - c. $a-b \in S$ and $ab \in S$ for any $a,b \in S$
 - d. None of the above.
- 10. A homomorphism $\phi: G \to H$ is called monomorphism if
 - a. ϕ is injective.
 - **b.** ϕ is surjective
 - c. ϕ is injective and ϕ is surjective
 - d. None of the above.