Mid-West University

Examinations Management Office

Surkhet, Nepal

End Semester Examination-2080

Level: B.Ed. / I Semester

FM: 60

Time: 3.00 hrs.

PM: 30

Sub: Calculus for Teachers (MATH 414/315)

Candidates are required to give their answers in their own words as far as practicable.

Attempt All the Questions:

Group "B"

 $6 \times 5 = 30$

- 1. Define function and find the value of b which makes the function $f(x) = x^2 1$ if x < 3 continuous at x = 3
- 2. Find the ds/dx for the curve $x^{2/3} + y^{2/3} = a^{2/3}$
- 3. Find the equation of tangent and normal of the curve $x^2/4 + y^2/9 = 1$ at (2,3)

Or

Find the maximum and minimum values of the function. $F(x, y) = x^2 + 3y^2 + 4x + 6y + 8$

- 4. Find the nth derivatives of the function of $Y = (ax + b)^m$
- 5. Evaluate the following limits $\lim_{x\to 0} \frac{\tan x}{x-\sin x}$
- 6. Find the asymptotes of the curve $y = \frac{x}{(x-1)^2(x-2)}$

Or

Trace the following curve $y^2 = x^2(a - x)$

Group "C"

 $2 \times 10 = 20$

7. Find the pedal equation of the curve $\frac{y^2}{4a} = (x+1)$

8. State and prove the langrage's mean value theorem.

Or

Define homogeneous function of three variables. Verify Euler's Theorem of the function f(x, y) = x3 - 2x2y + 3xy2 + y3.

THE END

Mid-West University

Examinations Management Office

Surkhet, Nepal

End Semester Examination-2080

Level: B.Ed. / I Semester

c. oblique

Sub. Calculus for Topobers (MATH 414/315)

Sub: Calculus for Teachers (MATH 414/313)	
Roll No: Group	'A' 10 × 1 =10
Tick (✓) the best answers:	
1. Which one function is known as surj	jective?
a. Onto	b. One to one
c. Composite	d. Inverse
2. The polar sub-normal of the curve reby	=f (Θ) at the point (r , Θ) is given
2 <u>de</u>	b.
$\frac{d}{dr}$	b. $\frac{dr}{de}$ d. $r \frac{de}{dr}$
a. $r^2 \frac{de}{dr}$ c. $\frac{de}{dr}$	d. $r \frac{1}{dr}$
3. The value of dy/dx of $y^2 = 12x$ at (3)	3,6) is
a. 1/6	b. 2
c. 3	d. 1
4. The length of sub- normal is?	
\mathbf{a} , \mathbf{y}/\mathbf{y}_1	b. y. y ₁
c. $y\sqrt{1+(y_1)^2}$	d. all of the above
5. Which one of the followings is the	indeterminate form?
a. 1/2	b. 3/4
c. ∞/∞	$d.\frac{o}{\infty}$
6. How many rules of tracing of Carte	esian curve are there?
a. 4	h. 6
c. 5	d. 8
7. The asymptote of the form $y = m x$	+ c is known as
a. horizontal	x+ vertical
c. oblique	d. none of the above

8. The nth derivative of the function $y = x^n$ is ... b. nyⁿ a. nxⁿ⁻¹ d. nyn-1 c. n!

9. For what value of c the function $f(x) = \sin x$ in $[-\pi, \pi]$ satisfies the Rolle's Theorem?

0

b. 1

c. π

d. 2

10. What is the degree of function $x^5 + x^3y^3 + 7x^4y5$?

a. 5

c. 7

d. 9