Mid-West University Examinations Management Office

Surkhet, Nepal

End Semester Examination-2080

Level: B.Ed. / I Semester

FM: 60

Time: 3.00 hrs

PM: 30

Sub: Number Theories for Teachers (MATH 415/316)

Candidates are required to give their answers in their own words as far as practicable.

Attempt All the Questions.

Group "B"

 $6 \times 5 = 30$

- 1. Define rational numbers with examples and write the properties of rational number.
- 2. Define the greatest common divisor (GCD). find the greatest common divisor (gcd) of 256 and 1156 by using Division Algorithm.
- 3. Find the solutions of linear Diophantine equation 21x + 35y = 11.

Or

For positive integers a and b prove that gcd(a, b).LCM(a, b) = ab

4. Define polynomial function.

An integer $N = a_m b^m + a_{m-1} b^{m-1} + a_{m-2} b^{m-2} + \dots + a_2 b^2 + a_1 b^1 + a_0 b^0$ in decimal representation, with $0 \le a_k \le 9$ is divisible by 8 iff the number formed by its hundreds, tens and units digit is divisible by 8.

- 5. Define Linear Congruence. solve linear congruence $12x \equiv 48 \pmod{18}$
- 6. Let n be positive integer and 'a' be any integer with gcd(a, n) = 1 then $a^{\emptyset(n)} \equiv 1 \pmod{n}$.

Or

State and prove Wilson's Theorem.

- 7. Given integers a and b with b > 0, there exists unique q and r satisfying a = qb + r, $0 \le r < b$. The integers q and r respectively called quotient and reminder in the division of a by b.
- 8. The quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an odd prime, has a solution if and only if $p \equiv 1 \pmod{4}$.

Or

Let P be an odd prime and gcd(a, p) = 1. If n is the number of integers in the set S; $S = \{a, 2a, 3a, \dots, \frac{p-1}{2}a\}$ whose remainders upon division of P exceeds $\frac{p}{2}$, then $\left(\frac{a}{p}\right) = (-1)^n$

THE END

Mid-West University

Examinations Management Office

Surkhet, Nepal

End Semester Examination-2080

Level: B.Ed. /I Semester

Cub. Number Ti

Sub: Number The	cones for Teachers (MATH	415/316)	
Roll No:	•••		
	Group "A"	$10\times1=10$	
Tick (✓) the best answer	s:		
1. A number that is in the	form of a+bi is called		
a. rational number	b. irration	b. irrational number	
c. complex number	d. natural	number	
 2. The algebraic number of 0 is a3 c2 	b2 d. 0		
3. For some integers a, b, held?	c, which one of the following	ng conditions is not	
a alb 11a and ala	b. If $a b$ and $c d$ the	en ac bd	

- d. If a|b and c|d then (a+c)|(b+d)c. If a|b and a|c then a|bc
- 4. The gcd (12, 18, 28) is ...

b. 2 a. 4 d. 6 c. 7

5. Let n > 0 be fixed and a, b, c, be arbitrary integers. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then which one of the following is transitive

property?

a. $ab \equiv bc \pmod{n}$

b. $ac \equiv bc \pmod{n}$

c. $a \equiv c \pmod{n}$

 $d. b \equiv c \pmod{n}$

6. Which one of the followings is the form of linear Diophantine equation?

a. ax + by = c

b. ax - by = c

c. ax + by = 0

d. ax = c

7. The product of two or more integers of the form 4n + 1 is of the form...

a. 4n - 1c. 4n + 1 b. 4n d.4n + 2

8. Which one of the following numbers is not a prime number?

a. 43

b. 59

c. 131

d. 129

9. If n is prime then Euler's Phi-function is...

a. $\emptyset(n) = n + 1$

b. $\emptyset(n) = n - 1$

c. $\emptyset(n) = n$

 $d. \phi(n) = 0$

10. For any prime p, which one of the following relations is true?

$$\mathbf{a.}\ p! \equiv 1 (mod\ p)$$

$$b. (p-1)! \equiv 1 \pmod{p}$$

$$c. (p-1)! \equiv -1 (mod p)$$

$$d. p! \equiv -1 \pmod{p}$$