Mid-West University

· Examinations Management Office

Surkhet, Nepal

End Semester Examination 2080

B.Ed. Level /VI Semester

Sub: Sub: Multivariable Calculus (Math 463)

Roll No.

Group 'A'

10×1=10

Tick (✓) the Best Answer.

- 1. The range of the function $g(x, y) = \sqrt{9 x^2 y^2}$ is
 - a. [0,3]
 - b. [3,0]
 - c. [-3,3]
 - d. [3, -3]
- 2. Which one of the followings is cylindrical coordinate?
 - a.(x,y)

b. (r, θ)

c. (r, θ, z)

- d.(x,y,z)
- 3. If F = Pi + Qj + Rk is a vector of field on \mathbb{R}^3 and P, Q, R have continuous second order partial derivatives, then
 - a. div curl F = 0

b. div curl F = 1

c. div curl F = 2

- d. div curl F = -1
- 4. If f conservative vector field, then
 - a. CurlF = 0

b. CurlF = 1

c. CurlF = 2

- d. CurlF = 3
- 5. The function V = f(r, h) represents the function of volume of cylinder through
 - a. Verbally

b. Numerically

c. Algebraically

d. IPO 🌛

- 6. The Cartesian coordinate of the point (x, y) is
 - a. (r, θ)

b.(a,b)

c. (θ,r)

- d.(y,x)
- 7. Let $f(x, y) = x^3y + e^{xy^2}$. Then,
 - $a. f_{xy} = f_{yx}$

b. $f_{xy} \neq f_{yx}$

c. Both a) and b)

- d. None
- 8. A point is said to be critical or stationary point of function if...
 - a. $f_{x}(a,b) = 0$

b. $f_{v}(a,b) = 0$

c. a) and b) both

- d. a) only
- 9. Which one of the followings is not curl?
 - a. Curl F

b. $\nabla \times F$

c. Curl $F = \nabla \times F$

- $d. \nabla. F$
- 10. Which one of the followings is Laplace's equation?
 - a. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$
 - b. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 1$
 - $c. \frac{\partial^2 u}{\partial x^2} \frac{\partial^2 v}{\partial y^2} = 0$
 - d. $\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 v}{\partial y^2} = 1$

Mid-West University Examinations Management Office

Surkhet, Nepal

End Semester Examination 2080

Level: B.Ed. / VI Semester

FM: 60

Time: 3 hrs

PM: 30

Sub: Multivariable Calculus (Math 463)

Candidates are requested to give their answers in their own words as far as practicable.

Attempt All the Questions.

Group 'B'

 $6 \times 5 = 30$

- 1. If $z = f(x, y) = x^3 + 3xy y^2$. Then find the differential dz. Also x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of Δz and dz.
- 2. Show that $f_{xy} \neq f_{yx}$ at (0,0) if $f(x,y) = \begin{cases} \frac{xy(x^2 y^2)}{x^2 + y^2} & x \neq 0, y \neq 0\\ 0 & f(0,0) = 0 \end{cases}$
- 3. Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy-plane and inside the cylinder $x^2 + y^2 = 2x$.

Or

Find the mass and center of mass of a triangular lamina with vertices (0,0), (1,0) and (0,2) if the density function is $\rho(x,y) = 1 + 3x + y$.

4. Evaluate $\iiint_E z dV$, where E is the tetrahedron bounded by the four planes x = 0, y = 0, z = 0 and x + y + z = 1.

- 5. Define curl F. If f is a function of three variables that has continuous second order partial derivatives, then show that $curl(\nabla f) = 0$.
- 6. Evaluate by Green's theorem $\int_C (x^2 \cosh y) dx + (y + \sin x) dy$, where C is the rectangle with vertices $(0,0), (\pi,0), (\pi,1), (0,1)$.

Or

Define surface integral of type second. Evaluate $I = \iint_S (xdydz + dzdx + xz^2dxdy)$, where S is the outer side of the part of the sphere $x^2+y^2+z^2=1$ in the first octant.

Group 'C'

 $2 \times 10 = 20$

- 7. Evaluate $\iint_S z dS$, where S is the surface whose sides S_1 are given by cylinder $x^2 + y^2 = 1$ whose bottom S_2 is the disk $x^2 + y^2 \le 1$ in the plane z = 0 and whose top S_3 is the part of the plane z = 1 + x that lies above S_2 .
- 8. State and prove "Gauss Theorem".

Or

If $f(x,y) = \sin x + e^{xy}$, then find that $\nabla f(0,1)$. Also find the directional derivative of the function $f(x,y) = x^2y^3 - 4y$ at the point (2,-1) in the direction of the vector v = 2i + 5j.

THE END