Mid-West University

Examinations Management Office

Birendranagar, Surkhet

End Semester - Examination, 2081

Subject: DE 455-Mathematical Methods in Economics II

Level/program: Bachelor (B.A) Semester: V Time: 3 Hours

FM: 60 PM: 30

Candidates are required to answer the questions in their own words as far as practicable.

Attempt ALL of the following Very Short Answer Questions.

10x1=10

- 1. How can you define first order and degree differential equation?
- 2. If P = (1, 2, 1), Q = (2, 1, 2) and R = (-2, 3, -2). Very that: $P \cdot (Q+R) = P \cdot Q+P \cdot R$
- 3. If X = (2, 3, -2) and Y = (1, 0, 1). Find ||X Y||?
- 4. How can you define angle between two vectors?
- 5. Define linear Transformation.
- 6. What is Eigen value of the matrix?
- 7. Find the determinant of the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- 8. Find the second order derivative of: $y = 3x^2$
- 9. What is stationary point?
- 10. What is condition of maxima at two variables?

Attempt any THREE of the Following Short Questions.

3x8 = 24

- 11. Define homogeneous equations. Solve: $x^2 \frac{dy}{dx} + y^2 = xy$.
- 12. Define the scalar and vector projection Q onto P. Find the scalar and vector projection Q onto P, if Q = (1, 2, 3) and P = (4, -1, 3).
- 13. If the revenue function and the total cost function of a firm are $R(x) = 14x x^2$ and $C(x) = x^3 2x$ respectively. Find the level of output x in order to maximize the profit. Also, find the maximum profit.
- 14. Define Euler's theorem on homogeneous function. Verify Euler's theorem for the function $u(x,y) = x^3 + 2x^2y + y^3$.

Attempt any TWO of the Following Long Questions.

2x13 = 26

- 16. i. Find a vector which is orthogonal to P = (0, 1, 0) with respect to vector Q = (1, 0, 0) and normalized it.
- ii. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation for which T(1,1)=3, T(0,1)=2 then, find the value of T(1,0).
- 17. How can you define the integral curve? The demand and the supply functions under pure competition are $D(x) = 20 2x x^2$ and $S(x) = x^2 + 8$ respectively.
 - i. Calculate the equilibrium price and quantity.
 - ii. Calculate the consumer and producer surplus at the equilibrium point.
 - iii. Also, calculate the total surplus.
- 18.Examine the function for maximum or minimum

$$f(x,y) = x^2 + y^2 + xy + 10x + 10y.$$

Find also the extreme values.
