Mid-West University

Examinations Management Office

End Semester Examinations 2081

Bachelor level/ B.E. Computer/ 6th Semester

Full Marks: 50 Time: 3 hours Pass Marks: 25

Subject: Operating System (CO464/CO520)

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.
- 1. Highlights the milestone of operating system. Explain the layered structure of operating system. [2+3]
- 2. What is mutual exclusion? Explain Dekker's Algorithm with its relevancy. [2+3]
- 3. Define deadlock. What are the necessary conditions for deadlock? Explain how deadlock is handled? [1+2+2]
- 4. What is TSL? Explain the working of PCB & IPC. [1+4]
- 5. What is the role of Kernel in OS? Consider the following matrices and calculate; [1+2+2]
 - a) Need Matrix
 - b) Is the system in safe state?

Use Bankers Algorithm.

P	Allocation				Maximum Required				Available			
	A	В	C	D	A	В	С	D	А	В	С	D
P	0	0	1	2	0	0	1	2				
P	. 1	0	0	0	1	7	5	0				
P	1	3	5	4	2	3	5	6	2	4	3	1
P	0	6	3	2	0	6	5	2	2	4	3	1
P	0	0	1	2	0	6	5	2				

6. Consider the following set of processes that arrives at given time, with the length of the CPU burst given in milliseconds: [2.5+2.5]

	<u> </u>				
Processes	Arrival Time	Burst Time			
P1	0	7			
P2	2	4			
P3	4	1			
P4	5	4			

Calculate:

a. AWT

b. ATAT

[Use SJF Scheduling]

- 7. What do you mean by page fault? How many page fault occurs for the page reference strings, with four page frames: 1,2,3,4,5,3,4,1,6,7,8,7,8,9,7,8,9,5,4,5,4,2 using LRU page replacement algorithm. [1+4]
- 8. What is starvation? Explain I/O device controller with the help of block diagram. [1+4]
- 9. What are the operations of file? Explain about distributed operating system. [2+3]
- 10. Write short notes on (Any Two). [2.5+2.5]
 - a) ACL
 - b) RPC & ATM
 - c) UNIX & LINUX OS

The End