Mid-West University **Examinations Management Office**

End Semester Exam-2081

B.Ed. Level /V Semester

Sub: Basic Abstract Algebra (MATH453)

Roll No.

Group 'A'

 $10 \times 1 = 10$

Tick (\checkmark) the Best Answer.

- 1. Let $G = \{a: a^5 = e \text{ (identity)}\}$. Then the elements of G are:
 - a. $\{a, a^2, a^3, a^4\}$

c. $\{a^3, a^4, a^5\}$

- b. {a², a³, a⁴} d. {e, a, a², a³, a⁴}
- 2. The set of integers Z with the binary operation "*" defined as a*b = a + b for a, $b \in Z$, is a group. The identity element of this group is
 - a. 0

b. 1

c. -1

- d. 12
- 3. Let G be a group where * as a usual operation. For a, $b \in G$, then which is correct

a.
$$(a^{-1})^{-1} = a^{-1}$$

b.
$$(a * b)^{-1} = a^{-1} * b^{-1}$$

b.
$$(a * b)^{-1} = b^{-1} * a^{-1}$$
 d. All of the above.

- 4. The order of symmetric group S₃ is ...
 - a. 13

b. 4

- c. 3
- 5. Which one if the followings is not correct?
 - a. The set of integers with respect to addition forms a group.
 - b. The set of integers (Z, +) is a commutative group.
 - c. The set of rational numbers (Q, +) is a group.
 - d. The set of odd integers is group under 't'.

- 6. Let A be a commutative ring with unity with two binary operations addition and multiplication, then A can be
 - a. An empty set.
 - {2}.
 - c. $\{0\}$.
 - d. Set of all natural numbers
- 7. Let A be a commutative ring with unity. Then,
 - a. Every unit element is a zerodivisor.
 - b. Every nilpotent element is a zerodivisor.
 - c. Every zerodivisor is a unit element.
 - d. Every zerodivisor is a nilpotent element.
- 8. How many subgroups can be formed from $S_3 = \{(1), (12), (13),$ (23), (123), (132)}?

a. 4

b. 5

c. 6

- d. 3
- 9. Let a and b be two ideals of a commutative ring A with unity. Then which of the following is falls?
 - a. $a \cap b$ is an ideal in A.

b. ab is an ideal in A.

- c. a + b is an ideal in A. d. a U b is an ideal in A.
- 10. Let q be an ideal in a ring A,
 - a. If q is primary, then A q = 0.
 - b. If A q = 0 then q is not primary.
 - c. If q is primary, then there exists a zero-divisor in A q which is not nilpotent.
 - d. There exists a prime ideal which is not primary.

End Semester Exam-2081

Level: B.Ed. / V Semester

FM: 60

Time: 3 hrs

PM: 30

Sub: Basic Abstract Algebra (MATH453)

Candidates are requested to give their answers in their own words as far as practicable.

Attempt All the Questions.

Group 'B'

 $6 \times 5 = 30$

- 1. Define group with example. Also show that the set {1, -1, i, -i} is a multiplicative finite group.
- 2. If (G, o) be a group and H be a non-empty subset of G. Then (H, o) is a subgroup of G iff aob⁻¹ ∈ H, for all a, b ∈ H. Pove it.
- 3. Write the definition of,
 - a) Commutative group
 - b) Division ring
 - c) Integral domain

Or

Let $f: G \to \overline{G}$ be a group homomorphism of G onto \overline{G} . If K is the kernel of f then then prove that: $\overline{G} \cong \frac{G}{K}$

- 4. State and prove Lagrange's theorem.
- 5. Prove that a finite integral domain is a field.
- 6. Prove that every subgroup of an abelian group is normal.

O

A non-empty subset S of a ring R is a subring of R if and only if $a, b \in S$ implies (i) $a - b \in S$ (ii) $a \in S$.

Group 'C'

 $2 \times 10 = 20$

- 7. Let R be a ring and I be an ideal in R. Then the set $\frac{R}{I} = \{a + I : a \in R\}$ in which two operations addition and multiplication are defined as (a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = (ab) + I for all $a, b \in R$ forms a ring.
- 8. Show that the set of real number with two binary operations addition and multiplication (R, +,.) forms a ring with showing all properties of ring.

Or

Let (G, *) be a group. If H and K are non-empty finite subset of G, then

- a) (H, *) is a subgroup of G if and only if $a * b \in H$, for all $a, b \in H$.
- b) If H and K are subgroups of group G, then $H \cap K$ is also a subgroup

THE END