Mid-West University **Examinations Management Office**

End Semester Exam-2081

B.Ed. Level /V Semester

Sub: Analytical Solid Geometry (MATH452)

Roll No.

Group 'A'

 $10 \times 1 = 10$

Tick (\checkmark) the Best Answer.

1. The equation of the plane in normal form is...

a)
$$ax + by + cz = 0$$

b)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

c)
$$lx + my + nz = p$$

$$d) ax + by + cz = 1$$

2. The perpendicular distance of the point (1, 2, 3) from the plane x + y + z - 3 = 0 is ...

a)
$$\sqrt{3}$$

b)
$$\frac{1}{\sqrt{3}}$$

d)
$$\sqrt{7}$$

3. The straight line is perpendicular to the given plane if...

a)
$$\theta = 180^{\circ}$$

b)
$$\theta = 90^{\circ}$$

c)
$$\theta = 0^{\circ}$$

d)
$$\theta = \infty^o$$

4. The equation of straight line passing through the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ is.

a)
$$\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n} = 0$$
 b) $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$

b)
$$\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$$

c)
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

c)
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$
 d) $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1} = 0$

- 5. The plane section of a sphere through its centre is known as a...
 - a) great circle

b) small circle

c) point circle

d) imaginary circle

- 6. If $u^2 + v^2 + w^2 d = 0$, then the sphere becomes a...
 - a) real sphere

b) imaginary sphere

c) line sphere

d) point sphere

- 7. Any straight line lying on the surface of the cone is called the...
 - a) guiding curve

b) generator

c) axis

d) tangent

- 8. The locus of the tangent lines to a given surface which are parallel to a given line is called an...
 - a) telescopeic cylinder

b) tierod cylinder

c) enveloping cylinder

d) welded cylinder

- 9. All the surfaces have a centre and three principal planes are known as...
 - a) central conicoids

b) elliptic paraboloid

c) hyperbolic paraboloid

d) none of the above

- 10. The slope of a line ax + by + c = 0 is...

Mid-West University

Examinations Management Office

End Semester Exam-2081

Level: B.Ed. / V Semester

FM: 60

Time: 3 hrs

PM: 30

Sub: Analytical Solid Geometry (MATH452)

Candidates are requested to give their answers in their own words as far as practicable.

Attempt All the Questions.

Group 'B'

 $6 \times 5 = 30$

- 1. Find the equation of the plane through the points P(1,1,1), Q(3,-1,2) and R(3,-1,2).
- 2. Prove that the points (1,-1, 3) and (3, 3, 3) are equidistant from the plane 5x + 2y 7z + 19 = 0 and lie on opposite sides of the plane.
- 3. Deduce the equation of a straight line through a given point and in a given direction (line in symmetrical form).

Find the angle between the line $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ and the plane ax + by + cz + d = 0.

4. Show that the shortest distance between the lines

$$\frac{x}{4} = \frac{y+1}{3} = \frac{z-2}{2}; \quad 5x - 2y - 3z + 6 = 0 = x - 3y + 2z - 3 \text{ is } \frac{34}{13\sqrt{6}}.$$

5. Find the equation of a sphere when the ends of the diameter $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ are given.

6. Show that the plane 2x - 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + z^2 - 2x - 4y + 2z - 3 = 0$ and find the point of contact.

Or

Find the equation of a cone whose vertex at (α, β, γ) and base $y^2 = 4ax$, z = 0.

Group 'C'

 $2 \times 10 = 20$

- 7. Show that the lines x + 2y 5z + 9 = 0 = 3x y + 2z 5 and 2x + 3y z 3 = 0 = 4x 5y + z + 3 are coplanar. Find the equation of the plane in which they lie.
- 8. Define enveloping cone. Also, find the equation of the enveloping cone with vertex at (α, β, γ) whose generators touch the sphere $x^2 + y^2 + z^2 = a^2$.

Or

Explain the central conicoid. Also, deduce the equation of tangent plane at the point (α, β, γ) to the central conicoid $ax^2 + by^2 + c = 1$

THE END