Mid-Western University

Examinations Management Office

Chance Examinations -2081

Bachelor level/B.Sc. / 8th Semester

F.M.: 100

Time: 3hrs

P.M.: 50

Subject: Advance Calculus I (MATH 483)

Candidates are required to give their answer in their own words as far as Practicable. The figures in the margin indicate full marks.

Group 'A'
$$[6 \times (2+2) = 24]$$

- 1. a) For each \vec{a} , $\vec{b} \in \mathbb{R}^n$, show that, $|\vec{a} + \vec{b}| = |\vec{a}|^2 + 2 \vec{a} \cdot \vec{b} + |\vec{b}|$.
 - b) For each $\vec{a}, \vec{b} \in \mathbb{R}^n$, show that $||\vec{a}| |\vec{b}|| \le |\vec{a} \vec{b}|$.
- 2. a) Let $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$

Show that f is continuous at x = 0 and nowhere else.

- b) If $u = f(2x y^2, x\sin 3y, x^4)$, find $\partial_y u$.
- 3. a) If $f(x) = x \cos \frac{1}{x}$, for $x \neq 0$ and f(0) = 0 show that f is differentiable $\forall x \in \mathbb{R}$.
 - b) Compute differential df if $f(x,y) = e^{4x^2y-y^2}$.
- 4. a) Find the tangent plane to the surface $z = x^2 y^3$ at (2, -1, 5).
 - b) Can the equation $x^2 4x + 2y^2 yz = 1$ be solved uniquely for y in terms of x and z near (2, -1, 3)?
- 5. a) If (u, v) = f(x, y) = (x 2y, 2x y), calculate the inverse transformation $(x, y) = f^{-1}(u, v)$.

- b) is the function $f(x) = \begin{cases} \sqrt{1 x^2}, & \text{if } x \text{ is rational} \\ 1 x, & \text{if } x \text{ is irrational} \end{cases}$ is integrable on [0,1]
- 6. a) Find the region of integral for the other iterated integral $\int_0^1 \int_{x^2}^{\frac{1}{3}} f(x,y) dy dx.$
 - b) Define improper integrals with examples.

Group 'B'
$$[13 \times 4 = 52]$$

- 7. Let $\{x_n\}$ and $\{y_n\}$ be sequence in R such that $x_n \to a$ and $y_n \to b$. Show that $x_n + y_n \to a + b$ and $x_n y_n \to ab$.
- 8. "A sequence $\{x_n\}$ in \mathbb{R}^n is convergent if and only if it is Cauchy". Prove it.
- 9. If $f(x, y) = \frac{xy(x^2 y^2)}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$, and f(0, 0) = 0. Verify that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.
- 10. If u = f(xz, yz), then show that $x\partial_x u + y\partial_y u = z\partial_z u$.
- 11. Define directional derivatives of f at \vec{a} in the direction \vec{u} . If f is differentiable at \vec{a} then show that the directional derivatives of f at \vec{a} exists and $\partial_u f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{u}$.

OR

If u = F(x + g(y)), then prove that $u_x u_{xy} = u_y u_{xx}$.

- 12. Find the maximum and minimum value of the function f(x, y) = xy (12 3x 4y).
- 13. Find third order Taylor polynomial of $f(x, y) = e^{x^2 + y}$ about (x, y) = (0,0).
- 14. Find an equation for the tangent plane to the surface

$$x = \frac{1}{u+v}$$
, $y = -(u+e^v)$, $z = u^3$ at the point $(1, -2, 1)$.

OR

- 15. For the transformations (u, v) = f(x, y) compute Jacobian det D f, where $u = x^2 + 2xy + y^2$, v = 2x + 2y.
- 16. If f is continuous on [a, b], then f is integrable on [a, b].
- 17. Evaluate the iterated integral $\int_0^1 \int_{\sqrt{x}}^1 \cos(y^3 + 1) dx dy$.
- 18. For the regions $S \subset \mathbb{R}^2$, express the double integral $\iint_S f \, dA$ in terms of iterated integrals in two ways, where S is the region between the parabolas $y = x^2$ and $y = 6 4x x^2$

Evaluate $\int_{1}^{2} \int_{1/x}^{1} y e^{xy} dy dx$.

19. Determine whether the improper integral converges; $\int_0^\infty x^{-1/3} (1-x)^{-2} dx.$

Group 'C'
$$[4 \times 6 = 24]$$

- 20. Define monotone sequence in R. Prove that every bounded sequence in R has convergent subsequence.
- 21. Let S be the circle formed by intersecting the plane x + z = 1 with the sphere $x^2 + y^2 + z^2 = 1$. Find a parametrization of S and parametric equations for the tangent line at $\left(\frac{1}{2}, -\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$.

OR

22. If $u = f(x, y), x = s^2 - t^2, y = 2st$ then show that $\partial_s^2 u + \partial_t^2 u = 4s^2 - t^2)(\partial_x^2 f + \partial_y^2 f)$.

Suppose u is a function of (x, y) in some open set in \mathbb{R}^2 . If (x, y) is related to

$$(r, \theta)$$
 by $x = r \cos \theta$, $y = r \sin \theta$. Then $f_{xx} + f_{yy} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$.

23. Find the volume of the region above the triangle in the xy-plane with vertices (0,0), (1,0) and (0,1), and below the surface z = 6xy(1-x-y)

THE END