Mid-West University

Examinations Management Office

End Semester Examination 2081

Bachelor level/ B. Sc. /3rd Semester

Time: 3 hours

Subject: Probability distribution (STA435/STAT335)

Candidates are required to give answer in their own words as far as practicable. The figures in the margin indicate full marks.

Group A

Long answer questions

- 1. Let a binomial variate X has parameter n and p. Find the probability that X =x for given X>0. Also find mean and variance of the distribution.
- 2. Discuss Chebyshev's inequality. Derive the law of large numbers from this inequality.
- 3. Explain the gamma distribution. Determine r^{th} moment about origin and then find the mean, variance, skewness and kurtosis of gamma distribution with parameter α .
- 4. The joint density function of two continuous random variable x and y is

$$f(x,y) = \begin{cases} k xy & ; & 0 < x < y < 5 \\ 0 & ; otherwise \end{cases}$$

- i) Find the value of constant k.
- ii) Find marginal probability density function of x and y.
- iii) Find conditional density function of each random variable for a given value of the other.
- iv) Check whether the two random variable x and y are independent or not.

OR

Define central F-variate and derive its distribution. Also mention its applications.

Group B

Short answer questions

- **5.** Define probability density function and probability distribution function for two variate case. Write down the properties of Bivariate distribution function.
- 6. If X and Y are independent gamma variates with parameters m and n respectively, show that the variable U=X+Y and V= $\frac{X}{X+Y}$ are independent and that U is a G(m+n) variate and V is $\beta_1(m,n)$ variate.
- 7. Define convergence in probability and state its properties.
- 8. Fit a Poisson distribution truncated at X=0 to the following data with respect to the number of red blood corpuscles(X) per cell:

Number of cells f 142 156 69 27 5 1	X	0	1	2	3	4	5
cells f	Number of	142	156	69	27	5	1
	cells f						

Also calculate the expected frequencies.

9. If X and Y are independently distributed chi-square variate with m and n degree of freedom respectively, show that U=X+Y and V= $\frac{X}{V}$ are independently distributed.

Full Marks: 60 Pass Marks: 30

[6x4=24]

[4x6 = 24]

Let X be a nonnegative random variable with probability density function f(x) and λ be a real positive number($\lambda > 0$) then prove that $P(x \ge \lambda) \le \frac{E(x)}{\lambda}$.

10. If the joint probability density function of X and Y is,

$$f(x,y) \begin{cases} \frac{1}{8}(6-x-y) & ; 0 < x < 2 , 2 < y < 4 \\ 0 & ; otherwise \end{cases}$$

Find:

i.
$$P(X+Y<3)$$

ii. $P(X<\frac{3}{2}/Y<\frac{5}{2})$

Group C

Very short answer questions (any six)

11. a) Distinguish between truncated and non-truncated distribution.

- **b)** What is the role of Jacobian of transformation?
- c) What do you mean by degree of freedom?
- d) Illustrate how conditional distributions are computed.
- e) Define marginal probability mass function of X and Y.
- f) Write down important applications of T distribution.
- g) Define χ^2 distribution.
- h) What are the applications of Markov inequalities?

The End

[6x2=12]