Mid-West University Examinations Management Office

Semester End Examination 2080

Bachelor level/ B. Sc. (CSIT)/ II Semester Time: 3 hours Subject: Mathematics II (MTH425)

Candidates are required to give their answer in their own words as far aspracticable. The figures in the margin indicate full marks.

Group A

Very short Answer Questions.

- 1. a) Define types of solution of system of linear equation with example. [2]
 - b) In which value of h and k such that the augmented matrix of linear system is consistent: $\begin{bmatrix} 1 & h & 2 \\ 4 & 8 & k \end{bmatrix}$. [2]
- 2. a) Define linearly dependent and linearly independent of vector with example. [2]
 - b. Define Null space. If $X = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, Is $X \in NulA$. [2]
- 3. a) Prove that every vector has unique additive inverse. [2]
 - b) Is the set H of all matrices of the form $\begin{bmatrix} 2a & b \\ 3a+b & 3b \end{bmatrix}$ a subspace of $M_{2\times 2}$? [2]
- 4. a) Define eigenvalue and eigenvector. Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, $v = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$, are u and v eigen vector of A? [1+1]
 - b) Define inner product of vectors. Let u = (3, 4) and v = (-8, 6) find the angle between two vectors u and v. [2]

Group B.

Short Answer Questions (Attempt any five)

5. Define the linear combination of a vectors. Is the vector

w = (-1, 3, 7) a linear combination of the vectors u = (4, 2, 7) and v = (3, 1, 4)? [1+3] 6. Define linear transformation.Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be define by

T(s,t) = (2s + 3t, -s + 5t, 4s - 3t). Show that T is linear. [1+3]

7. Find the inverse of block matrix = $\begin{bmatrix} 3 & 1 & . & 1 & 2 \\ 5 & 2 & . & 2 & 3 \\ . & . & . & . & . \\ 0 & 0 & . & 5 & 1 \\ 0 & 0 & . & 8 & 2 \end{bmatrix}$. [4]

8. Find the determinant by row reduced to echelon form:
$$\begin{vmatrix} 1 & -1 & -3 & 0 \\ 0 & 1 & 5 & 4 \\ -1 & 2 & 8 & 4 \\ 3 & -1 & -2 & 3 \end{vmatrix}$$
. [4]

Full Marks: 60 Pass Marks: 30

[5x4 = 20]

[4x(2+2) = 16]

- 9. Let $b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, b_2 = \begin{bmatrix} -3 \\ 4 \\ 0 \end{bmatrix}, b_3 = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix} \& X = \begin{bmatrix} -8 \\ 2 \\ 3 \end{bmatrix} . [X]_B$
 - a) Show that the set $B = \{b_1, b_2, b_3\}$ is a basis for \mathbb{R}^3 . [1]
 - b) Find the change of coordinates matrix from B to standard basis. [0.5]
 - c) Write the equation that relates x in \mathbb{R}^3 to $[X]_B$. [0.5]
 - d) Find $[X]_B$ for the X given above. [2]
- 10. If $S = \{u_1, u_2, \dots, u_p\}$ is a orthogonal set of nonzero vector in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S. [4]

Group C

Long Answer Question (Attempt any three)

11. What are the types of elementary row operations? Define basic variables and free variables with example? Find the general solution of system. [1+2+5]

 $x_1 - 2x_2 - x_3 + 3x_4 = 0$ $-2x_1 + 4x_2 + 5x_3 - 5x_4 = 3$ $3x_1 - 6x_2 - 6x_3 + 8x_4 = 2$

12. a) Is the matrix multiplication satisfied the commutative properties? Verify your answer. [2]

b) Use the crammer's rule to solve the system: [2]

5x - 3y = 9 and 2x + 5y = 16.
c) Daigonalize the matrix: A =
$$\begin{bmatrix} 5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2 \end{bmatrix}$$
. [4]

13. Define dimension of row space the null space and the column space. Find the basis for row space the

null space and the column space of $:A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & 3 \end{bmatrix}$. [2+6] 15. a) Find QR factorization of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. [6] b) Use Gram-Schmidit process to produce an orthogonal basis for W. Where $\begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 6 \\ 6 \end{bmatrix}$.

[3x8 = 24]

[2]