Mid-West University **Examinations Management Office Final Examinations-2079**

Bachelor level/ B.Sc /3rd Semester Time: 3 hours

Full Marks: 60 Pass Marks: 30

Subject: Calculus III (MTH433/333)

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Group A

Long questions

[4x6=24]

- 1) Define tangential and normal components of the acceleration vector. If $\vec{r}(t) = e^t \vec{i} + \sqrt{2} t \vec{j} + e^t \vec{k}$, find tangential and normal components of the acceleration vector.
- 2) Find the local maxima, local minima and saddle point of function $f(x, y) = 2x^3 + xy^2 + 5x^2 + y^2.$
- 3) Find the mass and center of mass of the lamina, D is bounded by $y = e^x$, y = 0, x = 0 and x = 1 and density function $\rho(x, y) = y$.

OR

Find the volume of the solid that lies within both the cylinder $x^{2} + y^{2} = 1$ and the sphere $x^{2} + y^{2} + z^{2} = 4$.

4) State Greens' theorem. Use Greens theorem evaluate the line integral

 $\int_C x^2 y^2 dx + 4xy^3 dy$, where C is the triangle with vertices (0,0), (1,3) and (0,3).

Group B

Short questions

[6x4=24]

5) Show that the curvature of the curve given by the vector function $\vec{r}(t)$ is $\kappa(t) = \frac{\left|\vec{r'}(t) \times \vec{r''}(t)\right|}{\left|\vec{r'}(t)\right|^3}. \text{ If } \vec{r}(t) = \langle e^t \cos t, e^t \sin t, t \rangle, \text{ find curvature at point}$

(1,0,0).

6) If
$$z = \ln(e^x + e^y)$$
, then prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (\frac{\partial^2 z}{\partial x \partial y})^2$

OR
If
$$x^2 + y^2 + z^2 = 3xyz$$
, find $\frac{\partial^2 z}{\partial x^2}$ and $\frac{\partial^2 z}{\partial y^2}$.

- 7) Evaluate the double integral $\iint_D (x + y) dA$, D is bounded by $y = \sqrt{x}$ and $v = x^2$.
- 8) Evaluate $\iiint_E \sqrt{x^2 + y^2} \, dV$, where E is the rectangle that lies inside the cylinder $x^2 + y^2 = 16$ and between the plane z = -5 and z = 4.
- 9) Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where C is vector function $\vec{r}(t) =$ $t^{2}\vec{i} + t^{3}\vec{i} + t^{2}\vec{k}$; $0 \le t \le 1$, $\vec{F}(x, y, z) = (x + y)\vec{\iota} + (y - z)\vec{j} + z^2\vec{k}$.
- 10) Find curl and divergence of vector field $\vec{F}(x, y, z) = e^{xy} sinz\vec{j} +$ $y \tan^{-1}(\frac{x}{-}) \vec{k}.$

Group C

Very short questions

- 11) a) Find vector equation and parametric equation of line segment joining P(1,-1,2) and Q(4,1,7).
 - b) Find directional derivative $f(x, y) = x^2y^3 y^4$ at (2,1) in the direction $\theta = \frac{\pi}{4}$.
- 12) a) Find equation of tangent plane to the surface $z = \sqrt{xy}$ at (1,1,1).
 - b) Use reimann sum with m = 4, n = 2 to estimate the value of

 $\iint_{R} (y^2 - 2x^2) dA$, where $R = [-1,3] \times [0,2]$. Take the sample points to be upper half corners of the square.

- 13) a) Change the rectangular to spherical coordinate of $(1,1,\sqrt{2})$.
 - b) Find gradient vector field of $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.

THE END

[(3x2)2=12]