Mid-West University **Examinations Management Office** End Semester Examinations 2081

	Ba Tir Su	achelor level/ B.E. Computer/ 7th SemesterFume: 3 hoursPaIbject: Digital Signal Analysis and Processing (EX 507)	Full Marks: 50 Pass Marks: 25	
	 Attempt all the questions Figures in the margin indicate full marks. Assume suitable values, with a stipulation, if necessary. Candidates are required to answer the questions in their own words as far as possible. 			
1.	a)	Define LTI system and write its properties.	[5]	
	b)	Find the average power and total energy of the signal $x(t)$ = A cost and state that whether energy signal or power signal or neither.	it is [5]	
2.		Define Z-transform for a discrete time signal. Find inverse Z-transform for $H(z) = \frac{z}{3z^2 - 4z}$	[5]	
3.		using partial fraction method for $1/3 < z < 1$. Plot the magnitude and phase response of the system which has zeros at $r = 0.6$ and $\theta = \pi$	/2. [6]	
4.	a)	Draw the direct form I and form II for the system having the transfer function $H(z) = \frac{0.14z^2 + 0.1595z + 0.02}{0.25z^3 + 0.15z^2 + 0.085z - 0.1}$	[6]	
	b)	Draw the cascaded realization for the system: $H(z) = \frac{z-4}{5+z-4z^2}$	[4]	
5.		Design the FIR filter for which desired frequency response is expressed as: $H_{d}(\omega) = \begin{cases} e^{-j\omega\tau} & for \omega \le \omega c \\ 0 & else \end{cases}$ The length of the filter should be 5 and $\omega = 1$ rad/sample. Use Bartlett Window as a prot	[6]	
6.		Design a digital filter using Butterworth approximation which satisfies the following com- Passband attenuation = 25 dB Stopband attenuation = 40 dB Digital passband frequency = 0.2π Digital stopband frequency = 0.6π	dition: [6]	

Find 8-point DFT of sequence $x[n] = \{1, 2, 3, 5, 0, 4, 6\}$ using DIFFFT algorithm. 7. [7]

The End