Mid-West Unive	rsity
Examinations Manage	ement Office
Birendranagar, Sur	khet
End Semester (Alternative/Physical)	Examinations -2078
Bachelor level/ B.Sc /4 th Semester	Full Marks : 60
Time: 3hrs	Pass Marks : 30
Subject : Electromanetism (PHY341)	

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Answer all the following questions

[6x10=60]

- 1. a) Discuss the method of electrical image and use it to calculate the potential and electric field due to point charge near a earthen sphere. [5]
 - b) What do you mean by a divergence of vector field? Derive the expression for divergence of vector field \vec{A} in Cartesian co-ordinate [5] system.
- 2. a) Evaluate, $\nabla^2(\frac{1}{r})$, where, $r = \sqrt{x^2 + y^2 + z^2}$, And show that $\phi =$ $q(\frac{1}{\sqrt{x^2+v^2+z^2}})$ satisfy the Laplace's equation. [5]
 - b) Define energy density in electrostatic field. Derive the expression for it. [5]
- 3. a) Write the importance of boundary conditions satisfy by Electric and magnetic fields in between two dielectrics? Discuss the dielectricdielectric boundary condition for Electric field (\vec{E}) . [5]
 - b) State and prove Amperes circuital law. For which condition this law is useful for determination of magnetic field? [5]

OR

- a) Derive the continuity equation and show that volume charge density of any charge is decay exponentially. [5]
- b) Define magnetic torque and magnetic moment? Derive the relation between them. [5]

4.	4. a) Define solid angle and magnetic scalar potential? Obtain an expression		
	for magnetic scalar potential. [5]		
	b) Write Maxwell's equation in free space,? Deduce the equation for the		
	propagation of electromagnetic wave in free space. [5]		
5.	a) Define Magnetic susceptibility and relative permeability? then, derive a		
	relation, $\vec{B} = \mu_0(\vec{M} + \vec{H})$ [5]		
	b) A parallel plate capacitor with plate area $5cm^2$ and plate separation of		
	3mm has a voltage $50\sin 10^3 t$ V applied to its plates. Calculate the		
	displacement current assuming $\varepsilon = 3\varepsilon_0$. [5]		
OR			
	a) Define lossy dielectrics and derive the electric and magnetic field		
	equation in lossy dielectric. [5]		
	b) Define Smith Chart and write its application in transmission line? Show		
	that total power of transmitted line is equal to the sum of incident and		
	reflected power. [5]		
6.	5. a) For the current density $\vec{J} = 10zsin^2\theta a_{\rho}A/m^2$, Calculate the current		
	passing through the cylindrical surface, $\rho = 2, 1 \le z \le 5m$. [5]		
b) Show that the general expression for input impendence at any point on			
	transmission line is,		
	$Z_{in} = Z_0 \left[\frac{Z_L + Z_0 tanhrl}{Z_0 + Z_0 tanhrl} \right]$, Where symbol have usual meaning. [5]		
	2012/00001		
	THE END		