Mid-West University

Examinations Management Office

Birendranagar, Surkhet

End Semester (Alternative/Physical) Examinations -2078

Bachelor level/ B.Sc /4th Semester

Time: 3hrs Pass Marks: 30

Subject: Linear Algebra I (MATH 343)

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all the questions.

 $[6 \times 10 = 60]$

Full Marks: 60

- 1. a) Is the system -x + y = 1 and 2x + y = 4 consistent? Solve the system of equations $2x_1 + 3x_2 x_3 = -5$, $4x_1$ $x_2 + 2x_3 = 24.3x_1 - 3x_3 + x_2 = -8$ by row – echelon form method.
 - b) Is the vector $\mathbf{w} = \begin{bmatrix} 7, 6, -5 \end{bmatrix}^{\mathrm{T}}$ in kernel of this matrix $\mathbf{A} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 1 & 6 \end{bmatrix}$? Find the inverse of

$$\begin{bmatrix} 1 & 2 & 3 \\ -2 & -1 & 1 \\ 3 & 2 & 0 \end{bmatrix}$$

- 2. a) Find the value of x when $Det\begin{bmatrix} 3 & 5 & 0 \\ 2 & 7 & 0 \\ x & 1 & x \end{bmatrix} = 10$. Find the left inverse of this matrix $\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}$ b) Consider $t\begin{bmatrix} 12 & 12 \\ 12 & 12 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$. Use the determinantal criterion for non invertibility to find all the values
 - of t for which this matrix is non invertable.
- 3. a) Find the centre of mass of the system $x_1 = (1, 3, 2)$, $x_2 = (-2, 1, 0), x_3 = (-3, 2, 2),$ if the weights are 3, 7, 5 are respectively. Define invertible matrix. Here are

$$A = \begin{bmatrix} 3 & 7 & 5 \\ 5 & 11 & 8 \\ 3 & 4 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 & 1 \\ 9 & -6 & 1 \\ -13 & 9 & -2 \end{bmatrix}$$
 If one of these the inverse of the other?

b) If A is invertible, then the solution of the system of equation $A\vec{x} = \vec{b}$ is given by the formula $x_j = \frac{\text{Det}[A_j(\vec{b})]}{\text{Det}(A)}$, $(1 \le j \le n)$ where $A_i(\vec{b})$ is matrix A which its j^{th} replaced by \vec{b} .

- a) If \vec{u} is a vector such that $A\vec{u} = \vec{b}$, then every solution of the equation $A\vec{x} = \vec{b}$ is of the form $\vec{x} = \vec{u} + \vec{z}$ for some vector $\vec{z} \in \ker(A)$. Let L_1 and L_2 be any two lines in \mathcal{R}^n described by Let $L_1 = \{ u + tv : t \in \mathcal{R} \}$ and L_2 $= \{ w + s z : s \in \mathcal{R} \}$. Prove that these two lines are same iff u - w and v are multiple of z.
- b) A plane in \mathbb{R}^3 , contains the three points: $\vec{\mathbf{u}} = (15, 5, 2), \vec{\mathbf{v}} = (6, 2, 1)$ and $\vec{w} = (10, 3, 2)$. What is the standard form of this plane?
- 4. Does the line intersect? Where $\vec{p} = (0, 7) + s(14, -7)$ and $\vec{q} = (0, 3) + t(3, 6)$. Find the value of β so that $(\beta, 3, -1)$ 5) is a linear combination of this set of vectors $\{(1, 3, -1), (-5, -5, 2)\}$.
- 5. In \mathbb{R}^2 , if a triangle has vertices **o**, **u**, and **v**, then the area of a triangle is one half of the absolute value of 2 x 2 determinant having rows (or columns) **u** and **v**. Then Area $[\Delta(\mathbf{0}, \mathbf{u}, \mathbf{v})] = \frac{1}{2} \begin{vmatrix} Det \begin{bmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{vmatrix}$. Define linear transformation. Let u = (1, 1, 3), v = (3, 2, -2), L(u) = (4, 1, 1, 1), L(v) = (-5, 1, -3, 3). Suppose L: $\mathcal{R}^3 \to \mathcal{R}^4$ is linear. If w = (5, 4, 4) and y = (2, 1, 7). Find L (w) and L (v).

Solve the system of equations x + 3y + 2z = 1, 2x + y + z = 0, 4x - y + 3z = 0 by Cramer's rule. List the methods to solve the system of linear equations. Solve the given system of linear equation in any method do you like and verify your answer.

$$x_1 + 3x_2 + x_3 = 6$$

 $2x_1 + 6x_2 + 3x_3 = 16$
 $3x_1 + 9x_2 + 4x_3 = 22$

6. The determinant of a matrix and the determinant of its transpose are equal. That is, $Det(A) = Det(A^T)$. Define singular and non-singular matrix. For two square matrices A and B of same size, prove that Det(AB) = Det(A). Det(B).

THE-END