Mid-West University Examinations Management Office Surkhet,Nepal

End Semester Examinations -2078

Bachelor level/ B.Sc / 3rd Semester Time: 3 hrs Subject : Calculus-III (MATH 333)

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Group A

Attempt all the questions

- 1. a. Find the limit $\lim_{t\to\infty} \left(e^{-3z}\vec{i} + \frac{t^2}{\sin^2 t}\vec{j} + \cos 2t\vec{k} \right)$. b. Find the length of the curve $\boldsymbol{r}(t) = \boldsymbol{i} + t^2\boldsymbol{j} + t^3\boldsymbol{k}$, $0 \le t \le 1$.
- 2. a.Find the unit tangent vector of r(t) = (1 + t³)t + te^{-t}j + sin2t k, at the point where t = 0.
 b. Find the domain of the function √y-x²/(1-x²).
- a.Show that the function u(x, y) = e^x siny satisfy the Laplace's equation.
 b. Calculate f_{xxyz} if f(x, y z) = sin(3x + yz).
- 4. a. Evaluate the iterated integral $\int_0^2 \int_y^{2y} xy \, dx \, dy$.
 - b. Change from rectangular coordinate to spherical form of $(-\sqrt{3}, -3, -2)$.
- 5. a. Find the Jacobian of transformation of x = 5u v, y = u + 3v. b. Find the Curl of $\mathbf{F}(x, y) = xe^{y}\mathbf{j} + e^{z}y\mathbf{k}$.
- 6. a. If $\vec{F}(x, y, z) = xz\vec{i} + xy\vec{j} y^2\vec{k}$, find $div\vec{F}$. b. Is the vector field $\vec{F}(x, y, z) = 2xy\vec{i} + (x^2 + 2yz)\vec{j} + y^2\vec{k}$ conservative? Justify it.

Group B

Attempt all the questions

- 7. If \vec{u} and \vec{v} are differentiable vector function then prove that $\frac{d[\vec{u}(t) \times \vec{v}(t)]}{dt} = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t)$.
- 8. A particle moves with position function $\vec{r}(t) = \langle t, t^2, 3t \rangle$. Find the tangencial and normal components of acceleration.
- 9. Find the equation of tangent plane to the given surface $z = y \cos(x y)$ at the given point (2, 2, 2).

OR

Find first partial derivative of the function $f(x, y) = \frac{ax+by}{cx+dy}$.

- 10. The Kinectic energy of body with mass m and velocity v is $K = \frac{1}{2}mv^2$. Show that $\frac{\delta K}{\delta w} \cdot \frac{\delta^2 K}{\delta v^2} = K$
- 11. If z = f(x, y) has continuous second order partial derivatives and $x = r^2 + s^2$ and y = 2rs, find $\frac{\partial z}{\partial r}, \frac{\partial^2 z}{\partial r^2}$.
- 12. Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region D in the xy-plane bounded by the line y = 2x and parabola $y = x^2$.

Full Marks : 100 Pass Marks : 50

[4×13=52]

[6(2+2)=24]

- 13. Evaluate the line of integral $\int_C (x^2y^3 \sqrt{x})dy$, where C is the arc of the curve $y = \sqrt{x}$ form (1,1) to (4,2).
- 14. Evaluate the triple integral $\iiint_B xyz^2 dV$, where B is the rectangular box given by $B = \{(x, y, z): 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$.
- 15. Let X and Y be random variables defined by

$$f(X,Y) = \begin{cases} 0.1e^{-(0.5x+0.29)} \\ 0 \text{ otherwise} \end{cases} \text{ if } X \ge 0, Y \ge 0$$

Verify that f is joint density function. Find $P(Y \ge 1)$ and $P(X \le 2, Y \le 4)$.

16. The integral $\int_C \vec{F} \cdot d\vec{r}$ is independent of path in D if and only if $\int_C \vec{F} \cdot d\vec{r} = 0$, for every closed path C in D.

OR

If f is a function of three variables that has continuous second order partial derivatives then $curl(\nabla f) = 0$.

- 17. Show that $F(x, y, z) = xyz^2\vec{\iota} + 2x^2yz^2\vec{j} + 3x^2y^2z\vec{k}$ is a conservative vector field.
- 18. If $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ is a vector field on R^3 and P,Q, and R have continuous second order partial derivatives, then $div \ curl\vec{F} = 0$.
- 19. Verify the Divergence Theorem for the vector field $\mathbf{F}(x, y, z) = 3x \mathbf{i} + xy \mathbf{j} + 2xz \mathbf{k}$, on the region E bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0 & z = 1

Group C

Attempt all the questions

20. Prove that for plane curve, curvature is $\kappa(t) = \frac{|f''(x)|}{[1+(f'(x)^2]^{\frac{3}{2}}}$.

Find the curvature of the $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ at the point (1, 1, 1). 21. If u = f(x, y), where $x = e^s cost$ and $y = e^s sint$, show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = e^{-2s} \left[\frac{\partial^2 u}{\partial s^2} + \frac{\partial^2 u}{\partial t^2} \right].$$

OR

If z = f(x, y) is a differential function of x and y where x and y are function of t, then z is a function of t and $\frac{dz}{dt} = \frac{\delta f}{\delta x} \cdot \frac{dx}{dt} + \frac{\delta f}{\delta y} \cdot \frac{dy}{dt}$

22. Find the volume of the solid bounded by the plane z = 0 and the paraboloid $z = 1 - x^2 - y^2$.

23. State and prove Green's theorem.

THE END

[6×4=24]