Mid-West University

Examinations Management Office

Birendranagar, Surkhet

End Semester (Alternative/Physical) Examinations -2078

Bachelor level/ B.Sc / 2nd Semester Time: 3hrs

Full Marks : 60 Pass Marks : 30

Subject: Calculus II (MATH 323)

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all the questions.

 $[6 \times 10 = 30]$

- 1. a) Find the vertex and focus of the ellipse $\frac{x^2}{64} + \frac{y^2}{100} = 1$. Identify and sketch the surface $x^2 + y^2 = 1$.
 - b) Determine whether given vectors are orthogonal, parallel or neither, where $\vec{a} = < -5$, 3, 7 > and $\vec{b} = < 6$, -8, 2 >.. Find the equations of the plane passing through the points (3, -1, 2), (8, 2, 4) and (-1, -2, -3).
- 2. Find the volume of the parellopiped determined by the vector $\vec{a} = < 6$, 3, -1 >, $\vec{b} = < 0$, 1, 2 > and $\vec{c} = < 4, -2, 5 >$. Derive the parametric equation of the line through the point $P_0 = (x_0, y_0, z_0)$ and parallel to the vector $\vec{v} = < a, b, c >$.
- 3. a) Determine the series $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^6}}$ is convergent or divergent. Determine the given series is convergent or divergent $1 \frac{1 \cdot 3}{3!} + \frac{1 \cdot 3 \cdot 5}{5!} \frac{1 \cdot 3 \cdot 5 \cdot 7}{7!} + \dots$
 - b) When a series is conditionally convergent? Give an example. Find a power series of $\frac{1}{x-2}$ and also find ln (x 2).

OR

Find the radius of convergence and interval of convergence of the given series $\sum_{n=1}^{\infty} (-2)^n \cdot \frac{x^n}{n^{\frac{1}{4}}}$. Define power series. Find the radius of convergence of the given series $\sum_{n=1}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$.

- 4. a) Show that $(\vec{a} \times \vec{b})$. $\vec{a} = 0$. Find the volume of the parellopiped determined by the vector $\vec{a} = < 6$, 3, -1 >, $\vec{b} = < 0$, 1, 2 > and $\vec{c} = < 4, -2, 5 >$.
 - b). Find the equation of the tangent to the curve $x = r(\theta \sin\theta)$, $y = r(1 \cos\theta)$ at $\theta = \frac{\pi}{3}$.
- 5. If θ is the angle between two vectors, then prove that $\vec{a} \cdot \vec{b} = ab \cos\theta$. Prove that $\vec{a} \times \vec{b}$ is perpendicular to \vec{b} . If θ is the angle between two vectors \vec{a} and \vec{b} , show that $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin\theta$.

OR

Test the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{3 \, n+2}{2n+3}\right)^n$ by the root test. Find the sum of the series $\sum_{n=1}^{\infty} \left(\frac{1}{n(n+1)} + \frac{2}{e^n}\right)$

6. Solve this diff. equation y'' - 2y' - 3y = x + 2 by the method of variation of parameters. Solve $y'' - 4y = x e^x + \sin 2x$ by the method of undetermined coefficients.