Mid-West University Examinations Management Office

End Semester Examinations 2081

Bachelor level/ B.E. Computer/ 1st Semester Time: 3 hours Subject: Engineering Mathematics-I (SH411/SH501)

Full Marks: 50 Pass Marks: 25

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.
- 1. a) i. If $y = e^{ax} \sin bx$, then prove that $y_{n+1} = 2ay_n (a^2 + b^2)y_{n-1}$. (2+3)

ii. Evaluate:
$$\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$$

- b) State and prove the Rolle's theorem. Also write the geometrical interpretation of Rolle's (4+1) theorem.
- a) i. Show that the radius of curvature at any point (x, y) of the curve ay² = x³. (3+2)
 ii. Find the asymptotes of the curve: r cos θ = a sin θ
 - b) i. Define Bernoulli's Equation and solve $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$. (3+3) ii. Integrate: $\int \frac{1}{5+4\cos x} dx$.
- 3. a) Define the Beta and Gamma function. Use the Beta and Gamma function, Show that (1+3) $\int_{0}^{\frac{\pi}{6}} \cos^{2}6\theta \sin^{4}3\theta d\theta = \frac{7\pi}{192}.$

b) i. Find the area of the loop of the curve y² = x²(x + a). (2+3)
ii. Find the volume of the solid formed by the revolution of the cardioid r = a(1 + cos θ) about the initial line.

- 4. a) i. Find the equation of the tangent to the ellipse $3x^2 + 2y^2 = 1$ perpendicular to the line (3+2) x+3y=1.
 - ii. Find the center, length of axes, eccentricity and directrix of the ellipse $2x^2 + 3y^2 4x + 5y + 4 = 0$.
 - b) i. What does the equation $3x^2 + 2xy + 3y^2 = 2$ become when the axes are turned (2+3) through an angle 45^0 to the original axes?
 - ii. Find the centre, length of the axes and eccentricity of the conic $9x^2 + 4xy + 6y^2 22x 16y + 9 = 0$.

5. a) i. Solve the differential equation: $\frac{dy}{dx} + y \cot x = 2 \cos x.$ (2+3) ii. Solve: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{2x} \sin x.$

b) Define Homogenous linear differential equation and Solve: $x^2 \frac{d^2x}{dx^2} - 2x \frac{dy}{dx} + 2y = \frac{1}{x}$. (1+4)