

b. 3

MID-WEST UNIVERSITY SCHOOL OF MANAGEMENT (MUSOM)

(An Autonomous Institution)

MUSOM EXAMINATIONS SECTION

FINAL EXAMINATION-2024 (2080)

BACHELOR OF BUSINESS ADMINISTRATION (BBA) SEMESTER – II

Subject: Basic Mathematics Full Marks: 100	Course (Course Code: MGT 423 Time: 3 Hrs.		
Exam Roll No.:				
Section A: Multiple Choice Questions (1 ×	15 = 15 Marks) Time	: 15 Minutes		
Tick (✓) the correct answers				
1. A whole number is denoted by	_ ·			
a. R	c. Z			
b. Q	d. W			
2. A set A = $\{x: x \text{ is odd number, } 1 < x < 10\}$ is	·			
a. {2, 3,,10}	c. {1, 3, 5, 7, 9}			
b. {3, 5, 7, 9, 11}	d. {3, 5, 7, 9}			
3. Find the value of -14 + -3 - -5				
a22	c. 22			
b. 12	d12			
4. The linear function is represented by	0() 0 2 . 5 . 6			
a. f(x) = mx + c	c. $f(x) = 3x^2 + 5x - 6$			
b. $f(x) = 6$ 5. The condition of loss function is	d. $f(x) = x^3 + 3x$			
5. The condition of loss function is	c. $C(x) - R(x)$			
a. $R(x) - C(x)$	d. $AC - TC$			
b. $\pi(x) = 0$	u. AC-IC			
6. The range of the function $f(x) = x^2$, $x \in \mathbb{R}$, is				
a. $[0, \infty)$	c. (-∞,∞)			
b. $(-\infty, 0)$	d. {R}			
7. Find the value of $\lim_{x\to 2} \frac{3x^2-12}{x-2}$				
a. 0	c. ∞			
b. 12	d. 6			
8. The function f(x) is decreasing if				
a. $x < y \Rightarrow f(x) = f(y)$	c. $x < y \Rightarrow f(x) \le f(y)$			
b. $x < y \Rightarrow f(x) < f(y)$	d. $x < y \Rightarrow f(x) \ge f(y)$	')		
9. The derivative of $y = \log x^2$ is				
a. 2x	c. $\frac{2}{x}$ d. $\frac{1}{x^2}$			
b. 2 log x	, 1			
	$a. \frac{\pi^2}{x^2}$			
10. The integration of $\int_0^1 e^{2x} dx$ is				
	c. e-1			
a. $\frac{e^2}{2} - \frac{1}{2}$	d. 1			
b. $e^2 - 1$				
11. Determine the order of the equation. $(\frac{d^2y}{dx^2})^3 + \frac{1}{2}$	$5(\frac{dy}{dx})^4 + 16y = 0$			
a. 4	c. 2			

d. 1

12. The determinant of $\begin{vmatrix} 2 & -5 \\ 3 & -8 \end{vmatrix}$ is	
a. 31	c. 46
b34	d1
13. If two rows or columns in a determinant are interc	hanged, the value of the determinant is
a. Same sign	c. Identity
b. Zero	d. Opposite sign
14. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then $A^2 + 2A$ are equal to	
a. 4A	c. 2A
b. 3A	d. 6A
15. The depreciated amount is:	
a. $P_0 - P_T$	c. $P_o + P_T$
b. P _T - P ₀	d. None of these

≈6 ≈6

MID-WEST UNIVERSITY SCHOOL OF MANAGEMENT (MUSOM)

(An Autonomous Institution) FINAL EXAMINATION-2023

BACHELOR OF BUSINESS ADMINISTRATION (BBA)

SEMESTER - II

Subject: Basic Mathematics Full Marks: 100

Course Code: MGT423

Time: 3 Hrs.

You are required to answer in your own words as far as applicable. The figures in the margin indicate the full marks.

Section - B: Short Answer Questions

 $(8 \times 5 = 40)$ Marks)

Answer any eight questions:

1. Define the closed and opened intervals.

[2+3]

If A = [-1, 4) and B = [3, 6].

Find: i) AUB

ii) A-B

- 2. In a factory, 100 workers operate a flat machine, while 52 operate a dial machine. 17 workers can operate both machines. Find the number of workers who operate neither of the two machines.

 [5]
- 3. Write the following inequality by using the modulus sign

[2.5+2.5]

- a) -5<x<-2
- b) -3<x<8

4. a) If $f(x) = x^3 - \frac{1}{x^3}$, show that $f(x) + f(\frac{1}{x}) = 0$.

[2.5+2.5]

- b) Define the limit of a function. $\lim_{x\to\infty} \frac{2x^2 + 5x 1}{3x^2 + 8x + 10}$
- 5. The fixed cost of a new product is 15000, and the variable cost per unit is 500. If the demand function is 2500-50x, x is the number of units demanded, find the minimum number of items that should be produced to achieve break-even.

 [5]
- 6. Find $\frac{dy}{dx}$, a) $y = 7x^{10} + 5x^3 6$ b) $y = (x^2 + 1)(x^8 + 2)$.

[2.5+2.5]

7. Integrate the following with respect to x.

[2.5+2.5]

[5]

a) $\int \frac{x^2}{x+2} dx$

b) $\int (x + \frac{1}{x}) dx$

- 8. a) If the demand function is p = 40-3x and total cost function C(x) = 50x +500. Find the marginal revenue function and marginal profit function. [2]
 - b) Ramesh bought an investment bank stock for Rs. 100,000, and after 3 months, the value of the share rose by Rs. 150, and dividends of Rs. 5000 had been paid. Find the rate if he sells the stock after 3 months.
- 9. Define determinants. Prove that.

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{vmatrix} = 0$$
 [5]

10. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -5 & 2 \\ 3 & 7 \end{bmatrix}$. Verify that AB \neq BA.

 $(3 \times 10 = 30 \text{ Marks})^3$

Section C: Long Answer Questions

Answer any three questions:

- 11. In an examination conducted by M.U., 55% failed in English, 35% failed in Account, 30% failed in Economics, 16% failed in English and Economics, 10% failed in Economics and Account, 15% failed in English and Account, and 7% failed in all three subjects, find [10]
 - a) The pass percentage in all subjects
 - b) The fall percentage in one subject

- c) The fail percentage in exactly two subjects
- 2. A given product can be manufactured at a total cost of C(x) = Rs. $\left[\frac{x^2}{100} + 100x + 40\right]$, where x is the number produced. The price at which each unit can be sold is given by p = Rs. $\left[200 100x + 100x$

		•	1
χ.		_	ı
n	1	١	ŀ

- a) Determine the total revenue. [2]
- b) Find the maximum revenue. [2]
- c) Determine the production level x at which the profit is maximum. [2]
- d) What are the price per unit and the total profit at this level of production? [2]
- e) Find the break-even points. [2]
- 13. Evaluate the following [5+5]
 - a) $\lim_{x\to\infty}\frac{\sqrt{(1+2x)}-\sqrt{(1-2x)}}{x}$
 - b) $\lim_{x \to \infty} \frac{x^{\frac{5}{2}} a^{\frac{5}{2}}}{x^{\frac{3}{2}} a^{\frac{3}{2}}}$ where a > 0
- 14. Find the points where the function $x^3 3x^2 9x$ decreases or increases. Also, find the stationery and point of inflection of the function. [5+5]
- 15. a) There are three commodities, X, Y and Z, which are bought and sold by three dealers A, B and C. Dealer A sells 2 units of X and 5 units of Z and purchases 3 units of Y. Dealer B sells 5 units of X, 2 units of Y and purchases 7 units of Z. Dealer C sells 3 units of Y, 1 unit of Z and purchases 4 units of X. In the process, A earns Rs. 11, C earns Rs. 5, but B loses Rs. 12. Find the prices of each of the commodities X, Y and Z.
 - b) The value of a machinery plant increased by 10% in the first year, depreciated by 10% in the second year, and increased by 10% in the third year. If at the end of the third year, the value of the machinery plant was Rs.163, 350. Find the original value of the machinery plant. [5]

Section - D: Case Study

(15 Marks)

- 16. The research department of a manufacturing company presents the price demand equation P = 48 3x for a certain product, where p is the unit price (in rupees), and x is the quantity demanded in units. The financial department provides the cost function C(x) = 6x + 120, where C(x) is the cost in rupees for manufacturing and selling the product x units.
 - a) Find the domain and range of the function defined by the price-demand equation. [3]
 - b) Find the marginal revenue at x = 7, x = 8, and x = 9 and interpret these results. [3]
 - c) Find the break-even points. [3]
 - d) Find the best production level of products to produce the maximum profit by using the application of derivatives. [3]
 - e) What is the company's maximum profit? What is the price per product that produces the maximum profit? [3]