Mid-Western University

Examinations Management Office

Chane Examinations -2081

Bachelor level/ B.Sc /7th Semester

Full Marks: 100

Time: 3 hrs

Pass Marks: 50

Subject: Real Analysis II (MATH471)

Candidates are required to give their answers as far as practicable. The figures in the margin indicate full marks.

Group A

Attempt All the Questions $[6 \times (2 \times 2)=24]$

- 1. a) By using the definition, show that the function $f(x) = \sqrt{x}$ is differential on $(0, +\infty)$ and for all x_0 in $(0, +\infty)$ $f'(x) = \frac{1}{2\sqrt{x}}$.
- b. Suppose f is differentiable function in an interval I and $\forall x \in I, f'(x) = 0$ then f is constant on I
- 2. Find the limit using L' Hospital's rule $\lim_{x\to 0} (\frac{1}{\sin x} \frac{1}{x})$
 - b. If $A \subseteq \mathbb{R}$ is bounded and $x \in \mathbb{R}$ then Sup(x + A) = x + Sup A
- **3. a.** For all partition \mathcal{P} of [a, b] prove that $\underline{S}(f, \mathcal{P}) \leq \bar{S}(f, \mathcal{P})$
 - b) Define Upper and Lower Riemann integral.
- 4. a) Suppose $f: [a, b] \to R$ is bounded and nonnegative on [a,b], then prove that $\int_{\underline{a}}^{b} f \ge 0$.
 - b) If the series $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.
- 5. a) Define a power series with suitable example.
 - b. If $\{f_n\}$ is a sequence of function in B(S) converging uniformly on S to real valued function f, then $f \in B(S)$
- 6. a) If $\sum_{k=0}^{\infty} f_k = f$ uniformly on a set S, then $||f_n|| \to 0$.
 - b) Find the radius of convergence of the power series $\sum_{k=1}^{\infty} \frac{(x-3)^k}{k-2k}$.

Group B

 $[13 \times 4 = 52]$

- 7. Differentiability implies continuity but converse may not be true. Justify your answer with example.
- 8. State Mean-Value Theorem. Using Mean-Value Theorem for any differential function in the interval I $f'(x) = 0 \ \forall x \in I$. then f is

constant.

- 9. Find the 4th Taylor Polynomial of the function $f(x) = 3 + 5x^2 4x^3 + x^4$ about 1
- 10. Consider the characteristic function defined by $(x) = \begin{cases} 1 & \text{if } 3 < x < 6 \\ 0 & \text{otherwise} \end{cases}$. Prove that f is integrable on [0,10] and find $\int_0^{10} f$.
- 11. If $f: [c, d] \to \mathbb{R}$ is integrable on [a, b], then $\forall x \in (a, b)$, $\int_a^b f = \int_a^x f + \int_x^b f$.

OR

If f is continuous on the interval [a, b] then f is integrable on [a, b].

- 12. If f monotone on [a, b,], then f is integrable on [a, b,]
- 13. State and prove First Fundamental Theorem of Calculus.
- 14. If $f_n o f$ uniformly on a closed interval [a, b] and if each f_n is integrable on [a, b], then f is integrable on [a, b] and $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.

OR

If $f: [a, b] \to \mathbb{R}$ is bounded and a < c < b then $\int_a^{\overline{b}} f = \int_a^{\overline{c}} f + \int_a^{\overline{b}} f$.

- 15. Let $\sum a_n$ be non-negative series
 - a) if $\exists 0 < r < 1$ such that $\sqrt[n]{a_n} \le r$ for all but finitely many n, then $\sum a_n$ converges.
 - b) if $\sqrt[n]{a_n} \ge 1$ for finitely many n, then $\sum a_n$ diverges
- 16. Define the sequence $\{a_n^+\}$ and $\{a_n^-\}$. A series $\sum a_n$ converges absolutely if and only if both $\sum a_n^+$ and $\sum a_n^-$ converges.
- 17. If f is integrable on [a, b] then so does |f| and $\left| \int_a^b f \right| \le \int_a^b |f| \le M(b-a)$ when $|f| \le M$ on [a, b].
- 18. Given any sequence $\{x_n\}$ of positive real numbers, then $\frac{\lim_{n\to\infty} x_{n+1}}{x_n} \le \frac{\lim_{n\to\infty} \sqrt[n]{x_n}}{x_n} \le \overline{\lim_{n\to\infty} \sqrt[n]{x_n}} \le \overline{\lim_{n\to\infty} \frac{x_{n+1}}{x_n}}.$
- 19. Define absolutely converge and conditionally converge. Consider a series $\sum b_n$ of real numbers then $\sum b_n$ converges absolutely if and only if both $\sum b_n^+$ and $\sum b_n^-$ converge.

Group C

 $[4 \times 6 = 24]$

20. Define differential function. Suppose f is differential at an interior point x_0 of its domain, and g is differential at $f(x_0)$, an interior point of its domain. Then $g \circ f$ is differential at x_0 and

 $(g \circ f)'(x_0) = g' \circ f(x_0).f'(x_0) = g'(f(x)).f'(x_0)$

- 21. A bounded function $f: [a, b] \to \mathbb{R}$ is integrable over $[a, b] \Leftrightarrow \forall \varepsilon > 0$, \exists partition \mathcal{P} of [a, b] s. t. $\overline{S}(f, \mathcal{P}) \underline{S}(f, \mathcal{P}) < \varepsilon$
- 22. Let p be a fixed real number. The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n+6}{\sqrt{n^3+2}}$.

OR

Define derived series. If a function f is representable as a power series with non-zero radius of convergence, then f is differentiable at every point in the interior of its interval of convergence; moreover, its deriveseries is its derivative; that is $f(x) = \sum_{k=1}^{\infty} a_k (x-c)^k$ with interval of convergence I, then at every point in the interior of I, $f'^{(x)} = \sum_{k=1}^{\infty} a_k k(x-c)^{k-1}$.

23. Suppose $\{f_n\}$ converges uniformly to f on a set $S - \{x_0\}$ for some x_0 in S. If each f_n has a (finite) limit as $x \to x_0$, then so does f, and we can interchange the limit. More precisely, if $\forall n \in \mathbb{N}$, $\lim_{x \to x_0} f(x)$ exists and

$$\lim_{x\to x_0} \left(\lim_{n\to\infty} f_n(x) \right) = \lim_{n\to\infty} \left(\lim_{x\to x_0} f_n(x) \right).$$

THE END