Mid-West University

Examinations Management Office

Chance Examinations 2081

Bachelor level/ B.E. Computer/ 7th Semester

Full Marks: 50

Time: 3 hours

Pass Marks: 25

Subject: Digital Signal Analysis and Processing (EX471/EX507)

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.
- 1. a) What is linear time invariant (LTI) system. Explain its properties.

[2+3]

- b) Find the Fourier Transform of the signal $x[n]=a^{|n|}, |a| < 1$. Also plot the signal x[n].
- [5]

2. Find the Z-transform and locate ROC for the signal.

[5]

$$X[n] = 2^n u[n] + \left(-\frac{1}{5}\right)^n u[n]$$

- 3. Plot the magnitude and phase response of the system which has poles at r = 0.6 and $\theta = \pi$.
- [6]

4. a) Draw the direct form II of the following difference equation:

[2.5]

$$y[n] - 0.5y[n-1] - 0.2y[n-2] + 2x[n] + 0.4x[n-1] = 0$$

b) Obtain parallel form realization of the system: $H(z) = \frac{3(4z^2+10z+8)}{(2z+1)(z+2)}$

[2.5]

- c) Draw the lattice structure from the given FIR filter's system function. Also check whether the stability of the system. H (z)= $1 + \frac{13}{24z} + \frac{5}{8z^2} + \frac{1}{3z^3}$
- 5. Design the bandpass linear phase FIR filter having cutoff frequency of $\omega c1=1$ rad/sample and [6] $\omega c2=2$ rad/sample. Obtain the unit sample response through following window:

$$W(n) = \begin{cases} 1 & for \ 0 \le n \le 6 \\ 0 & elsewhere \end{cases}$$

6. Determine the system function of a digital filter H(z) using impulse invariance method at 2Hz [6] sampling frequency from $H_a(s)$ given below:

 $H_a(s) = \frac{2}{(s+1)(s+2)}$

7. What is discrete fourier transform (DFT) representation? Explain all the properties of DFT. [3+4]

The End