Mid-West University

Examinations Management Office

End Semester Examinations 2081

Bachelor level/ B.E. Computer/ 3rd Semester

ter/ 3rd Semester Full Marks: 50

Time: 3 hours Pass Marks: 25

Subject: Numerical Methods (SH431/SH506)

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.
- 1. a) Define trial and error method with suitable examples.

[3]

- b) Find the real root of the equation $Sinx + Cosx + e^x = 8$ correct up to 3 decimal places, using bisection method.
- [3]
- c) Using newton raphson method, compute root of Cosx + 1.3x = 3 correct upto 5 decimal places.
- [4]

2. a) Using LU decomposition method, solve the following set of equations 6x + 4y + 7z = 32, 4x + 6y + z = 40, 3x + 4y - z = 56

[4]

[4]

- b) Find the largest eigenvalue and corresponding eigen vector of the following matrix using
 - power method. $\begin{bmatrix} 4 & -2 & 0 \\ -2 & 4 & -2 \end{bmatrix}$

[4]

3. a) From the following set of data, fit $y = ax^2 + bx + c$

х	1	2	2.5	3	3.5	4
f(x)	1.1	1.4	2	2.6	3.4	4.2

b) Fit the following set of data into cubic splines to find y(3.2).

7 1 it the following but of them have charte springs to them y(2 in).										
	x	2	4	6	8	10				
	у	5.13	8.39	10.9	7.82	13.78				

4. Using trapezoidal rule, evaluate $\int_0^2 e^{x^2} dx$ taking n = 8.

[4]

[4]

- 5. a) Find y(0.2) for $d^2/dx^2 5dy/dx + 6y = e^x$, with step length 0.1 using Runge-Kutta-4 method [5] where y(0) = 1 and y¹(0) = 2.
 - b) Solve dy/dx = 1 + xy with y(0) = 0 by Picard's method, upto third approximation.

[4]

- 6. Solve the Poisson's equation $\nabla^2 f = -10 (x^2 + y^2 + 10)$ over the square domain x = y = 0 [4] and x = y = 3 with f = 0 on the boundary and h = 1.
- 7. What is Laplacian equation? Explain in detail.

[7]