Mid-West University

Examinations Management Office

End Semester Examinations 2081

Bachelor level/ B.E. Computer/ 3rd Semester

Full Marks: 50

Time: 3 hours

Pass Marks: 25

(2+3)

(2+3)

Subject: Engineering Mathematics III (SH431/SH505)

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.

1. a) i. Prove that
$$\begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{vmatrix} = xyz(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + 1).$$

ii. Find the rank of the matrix $\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ by reducing normal form.

- b) i. Show that every square matrix can be uniquely expressed as the sum of Symmetric and Skew-Symmetric matrices.
 - ii. Find the Eigen value and Eigen vectors of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{bmatrix}$.
- 2. a) i. Diagonalise the matrix $A = \begin{bmatrix} 3 & 5 \\ 0 & 2 \end{bmatrix}$. (2+3)
 - ii. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x y)\vec{i} + (x + y)\vec{j}$ along the curve $y = \sqrt{x} \& y = x^2$.
 - b) State and prove the Green's theorem. (5)
- 3. a) i. Applying the Gauss' Divergence theorem to evaluate $\iint_S \vec{F} \cdot \hat{n} ds$ where,

$$\vec{F} = (2xy + z)\vec{i} + y^2\vec{j} - (x + 3y)\vec{k}$$
 and V is the region bounded by the surface of the plane $2x + 2y + z = 6$, $x = 0$, $y = 0$ and $z = 0$.

ii. Find the inverse Laplace transform of $\log \left\{ \frac{s(s+1)}{s^2+4} \right\}$.

- b) i. Evaluate the integral $\int_0^\infty te^{-3t} \sin t \, dt$ by using Laplace transform. ii. Using Laplace transform to solve y'' + y' - 2y = x given y(0) = 1, y'(0) = 0. (2+3)
- 4. a) i. Prove that Second Shifting theorem, If $L^{-1}[F(s)] = f(t)$, then $L^{-1}[e^{-as}F(s)] = [f(t-a)u(t-a)]$. (3+2)
 - ii. Obtain the half range cosine series for $f(x) = (x^2)$ in range $0 \le x \le \pi$.
 - b) Obtain a Fourier series to represent $x + x^2$ form $x = -\pi$ to $x = \pi$ and deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$ (4)
- 5. a) Solve by Big-M method

$$2x + y \le 150$$
Maximize $z = 7x_1 + 4x_2$ Subject to $4x + 3y \le 350$ and $x, y \ge 0$.
$$x + y \ge 80$$
(5)

b) Solve by Simplex Method using duality:

Minimize
$$z = 21x_1 + 50x_2$$

Subject to constraints $2x_1 + 5x_2 \ge 12$
 $3x_1 + 7x_2 \ge 17$ and $x_1, x_2 \ge 0$. (5)