Mid-West University

Examinations Management Office

End Semester Examinations 2081

Bachelor level/ B.E. Computer/ 4th Semester

Full Marks: 50

Time: 3 hours

Pass Marks: 25

[2.5]

Subject: Applied Mathematics (SH441/SH507)

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.
- 1. a. i. Find the cube root of -1. [2.5]
 - ii. Show that the function $w = \log z$ is analytic everywhere except z = 0.
 - b. Define Harmonic Function. Show that $u = e^{-x}\{(x^2 y^2)\cos y + 2xy\sin y\}$ is [1+4] harmonic and find corresponding analytic function.
- 2. a. i. Evaluate $\int_{1-i}^{2+i} (2x+iy+1)dz$ along the straight line form z=1-i to z=2+i. [2]
 - ii. Evaluate $\int_C \frac{z-1}{(z+1)^2(z-2)} dz$ where C is the circle |z-i|=2.
 - b. State Cauchy's Residues Theorem. Evaluate $\int_0^{2\pi} \frac{d\theta}{5-4\sin\theta}$ by contour integration in the complex plane. [1+4]
- 3. a. i. Prove that (Initial Valued Theorem): If x(k) = 0 for k < 0 and Z[x(k)] = X(z) [3] for $k \ge 0$, then $x(0) = \lim_{z \to \infty} X(z)$ provided the limit exist.
 - ii. Find the Z-Transform of the function $X(t) = t^2 e^{-at}$. [2]
 - b. Define Inverse Z-transform. Obtain the inverse z-transform of $X(x) = \frac{3z^3 + 2z}{(z-3)^2(z-2)}$ by using inversion integral method. [5]
- 4. a. State Fourier Integral Theorem and show that the Fourier cosine integral representation of the function $f(x) = e^{-x}$ is $\int_0^\infty \frac{\cos \omega x}{1+\omega^2} d\omega = \frac{\pi}{2} e^{-x}$.
 - b. i. Find the Fourier transform of $f(x) = \frac{1}{0}$ for |x| < 1 and hence show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$ [3]
 - ii. Solve: $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial x} + u$ where $u(x, 0) = 6e^{-3x}$.
- 5. a. Drive the solution of Laplace equation in two dimension. [4]
 - b. Derive the one dimensional heat equation. [4]

The End