Mid-West University

Examinations Management Office

End Semester Examinations 2081

Bachelor level/ B.E. Computer/ 4th Semester

Time: 3 hours

Full Marks: 50 Pass Marks: 25

Subject: Theory of Computation (CO441/CO508)

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.
- 1. What is the role of theory of computation for the development of AI tools? Differentiate between DFA & NFA. Construct an NFA accepting the set of all string whose second last symbol is 1 and show how the 11010 will be processed. [1+1+3]
- 2. How can you relate PDA and CFG? Explain how Pushdown automata are better than finite automata. [2+3]
- 3. Discuss the closure property of regular sets. Explain Pumping Lemma theory in the context of regular sets with your own example. [2+3]
- 4. What are derivative trees in context free grammar? Reduce the following grammer whose production rules are P: S \rightarrow AB, A \rightarrow a, B \rightarrow b, B \rightarrow D, E \rightarrow d where, G = $(\sum (S, A, B, D, E), (a,b,d), P, S)$. [2+3]
- 5. a. Remove the Unit production from the Grammar. [2.5]

$$S \rightarrow XY$$
, $X \rightarrow a$, $Y \rightarrow Z \mid b$, $Z \rightarrow M$, $M \rightarrow N$, $N \rightarrow a$

b. Show that $L = \{a^nb^nc^n \setminus N \ge 0\}$ is not a context free language. [2.5]

[Use Pumping Lemma for CFL]

- 6. Represent PDA graphically. Construct a PDA that accepts even palindromes of the form $L=\{WW^R/W=(a+b)^+ [1+4]\}$
- 7. Define Turing Machine. Design a TM that accepts the language consisting of all binary strings where the number of 1s is divisible by 3. [1+4]
- 8. What is Universal Turing Machine? Explain the properties of recursive and recursive language.

 [1+4]
- 9. Explain P and NP class of problems. How can you Compare Decidability with Un-decidability?
 [2+3]
- 10. Write short notes on (any two); [5]
 - a. Church's Hypothesis
 - **b.** Computable language and functions
 - c. Theory of Computational Complexity