Mid-West University

Examinations Management Office

End Semester Examinations 2081

Bachelor level/ B.E. Hydropower/ 3rd Semester

Time: 3 hours

Full Marks: 50

(5)

Pass Marks: 25
Subject: Engineering mathematics III (SH431/SH201)

- Attempt all the questions
- Figures in the margin indicate full marks.
- Assume suitable values, with a stipulation, if necessary.
- Candidates are required to answer the questions in their own words as far as possible.
- 1. a)
 i) Find the rank of the matrix $\begin{bmatrix} 3 & -1 & -2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$.
 - ii) Find the Fourier series to represent the function $f(x)=2-x^2$ for $-1 \le x \le 1$. (2+3)
 - b) i) Express the given matrix as the sum of a symmetric and skew-symmetric matrix. $\begin{bmatrix} 3 & -2 & 6 \end{bmatrix}$

$$\begin{bmatrix} 3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0 \end{bmatrix}$$

- ii) If a + b + c = 0 then solve the equation $\begin{vmatrix} a x & c & b \\ c & b x & a \\ b & a & c x \end{vmatrix} = 0.$ (2+3)
- 2. a) i) Find the Laplace transform of the following function, $te^{-3t}cos2t$.
 - ii) Define the Laplace transform . Find the inverse Laplace transform of $\frac{2a^2}{(s^4-a^4)}$. (2+3)
 - b) Solve the following differential equation by Laplace transform method. y''' y'' 4y' + 4y = 0, given that y(0) = y'(0) = 0 and y'' = 2.
- 3. a) i) Evaluate: $\oint_C \overrightarrow{F} \cdot \overrightarrow{dr}$ where $\overrightarrow{F} = x^2 y^2 \vec{\imath} + y \vec{\jmath}$ and C is the curve $4x \ y^2 \ from \ (0,0)$ to (4,4).
 - ii) Obtain the half-range cosine and sine series for f(x) = x in the interval $9 \le x \le \pi$. Hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$. (2+3)
 - Find Eigen values and corresponding Eigen vectors of a square matrix $A = \begin{pmatrix} 2 & 1 & 2 \\ 0 & -1 & 3 \\ 0 & 1 & 1 \end{pmatrix}$. (5)
- 4. a) State and proved Green's theorem.

OR

Evaluate: $\oint_c [(x+y)dx + (2x-z)dy + (y+z)dz]$. Where C is the boundary of the triangle with vertices at (2,0,0), (0,3,0) and (0,0,6), by applying Stoke's theorem. (5)

- Evaluate: $\iint_S \vec{F} \cdot \vec{n} \, ds$, where $\vec{F} = (2xy + z)\vec{i} + y^2 \vec{j} (x+3y)\vec{k}$, where S is the surface bounded by the plane 2x+2y+z=6, x=0, y=0, z=0, by using Gauss Divergence theorem. (5)
- 5. a) Evaluate: $\iiint_V \vec{F}$ dv, where V is the region bounded by x = 0, y = 0, y = 6, $z = x^2$ and z = 4 and $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$. (5)
 - b) Defined the line integral with example? Verify Stokes theorem for the function $\vec{F} = x^2 y^2)\vec{\iota} + 2xy\vec{\jmath}$, integral round the square in the plane z = 0, and bounded by the line x = 0, y = 0, x = a and y = b. (1+4)