Mid-West University

Examinations Management Office

End Semester Examination 2081

Bachelor level/BIT/ 1st Semester

Time: 3 hours

Subject: Discrete Mathematics (BIT413)

Full Marks: 60 Pass Marks: 30

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Group A

Very short answer questions (Attempt all)

[8x2 = 16]

- 1. Define Tautology with suitable example.
- 2. Define domain and co-domain of a function.
- 3. An Office building contains 27 floors and has 37 offices on each floor. How many offices are there in the building?
- 4. State Binomial Theorem.
- 5. What do you mean by multi-graph?
- 6. Define Sample Space in Discrete Probability.
- 7. What do you mean by Reflexive Relation?
- 8. Define Degree of Vertex with suitable example.

Group B

Short answer questions (Attempt Any Five)

[5x4=20]

- 9. Use Mathematical induction to prove that n³-n is divisible by 3 whenever n is a positive integer.
- 10. Show that : $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$.
- 11. Using direct proof prove that if n is an odd integer, then n² is an odd integer.
- 12. Use prime factorization method to find the gcd of 12 and 30.
- 13. Let F(x, y): x=y+6. Find the truth value of F(1,5) and F(6,0).
- 14. Find the coefficient of the term, containing y^8 in the binomial expansion of $(x+3y^2)^{17}$.

Group C

Long answer questions (Attempt Any Three)

[3x8 = 24]

- 15. What do you mean by recurrence relation? Solve the recurrence relation $a_n=5a_{n-1}-6a_{n-2}$ for n>=2, $a_0=1$ and $a_1=0$.
- 16. What is cryptography? Explain public key cryptography with example.
- 17. Determine by using Rules of Inference whether the argument is valid or not. If Ram is human, then Ram is mortal. Ram is Human. Therefore, Ram is mortal.
- 18. Define Minimum Spanning Tree. Show how Prim's algorithm can be used to find a minimum spanning tree for following Graph.

 $\begin{array}{c|c}
3 & 4 \\
1 & c & 2
\end{array}$

The End