Mid-West University

Examinations Management Office

Semester End Examination 2080

Bachelor level/ B, Sc. /4th Semester

Time: 3 hours

Full Marks: 60 Pass Marks: 30

Subject: Linear Algebra I (MATH343/MTH443)

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all the questions.

Group - A
$$[4x6 = 24]$$

1. Give definition and an example of REF and RREF.? Reduce the matrix A below to REF and

RREF:
$$A = \begin{bmatrix} 0 & -3 & 6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

OR

What are the types of elementary row operations? What do you mean by basic variables and free variables? Show that the system:

$$x + 2y - z = 3$$
, $3x - y + 2z = 1$, $2x - 2y + 3z = 2$, $x - y + z = -1$

is a consistent and solve them reducing into row reduce echelon form.

- Define symmetric and skew- symmetric matrix with an example. Show that every square matrix can be uniquely expressed as the sum of a symmetric and a skew- symmetric.
- 3. Define linear Transformation Kernel of linear Transformation. The linear map $x \to Ax$ be ingective if the corbel of A contains only one zero vector. Let $T: \mathbb{R}^2 \to \mathbb{R}$ be a linear transformation for which

$$T(1,1) + 3$$
, $T(0,1) = -2$ than find the value of $T(1,\frac{1}{2})$.

4. Let L_1 and L_2 be two line in R^n describe as

 $L_1 = \{u + tv; t \in R\}$ and $L_2 = \{w + sz, s \in R\}$ Show that these lilne are same if and only if u - w and v are multiple of z. Show that these two lines described parametrically R^3 are parallel and distinct:

$$(2,3,-5)+t(1,-3,2)$$
 and $(-1,-8,2)+s(-4,12,-8)$.

Group - B
$$[6x4 = 24]$$

- 5. Define the linear dependent and independent vector of a vectors, determine the vector (-1,3,7), (4,2,7) and (3,1,4) aer dependent and independent?
- 6. Is the vector (4,5,1) in the span of the set consisting of (3,5,-4), (2,1,-5) and (-2,1,3)?

- 7. Define singular and non-singular matrix? Let $A = \begin{bmatrix} 3 & -1 \\ 5 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ be the matrices of order 2. Determine the matrix B when A and B are inverse to each other.
- 8. Prove that in R^2 counterclockwise rotating of every point by an angle \emptyset is a linear transforming whose matrix $\begin{pmatrix} \cos \emptyset & -\sin \emptyset \\ \sin \emptyset & \cos \emptyset \end{pmatrix}$.
- 9. Define the rank of a matrix. Find the rank of matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$
- 10. Given the domain and range of the determinant function.

 If Let A be the $n \times n$ order invertible matrix. Then show that the solution to the system of equation Ax = b is given by these formula: $x_j = \left[\frac{Det A_j(b)}{Det(A)}\right] (1 \le j \le n)$

Group C
$$[6x2 = 12]$$

- 11. Define consistent and inconsistent system of equations. Is the given system -x+y=1 and 2x + y = 4 consistent
- Let weights 11kg, 2kg and 7kg be situated at these points (2, 1, 3),
 (1, -1, 0), and (3, -2, 1). Where should a weight of 5kg be situated so that the four weights would be in equilibrium? the weight are 3, 7 and 5 kilos respectively.
- 13. Define Null space. If $X = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, Is $X \in NulA$.
- 14. If x and y are the vectors in Ker(A), and if α is a scalar then x + y and α x are also in Ker(A).
- 15. Let S be a triangle or parallelogram having vertex at 0 and A be the matrix. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear mapping define by T(X) = AX then show that Aera[T(S)] = |Det(A)|Area(S).
- 16. Us the crammer's rule to solve the system: x + y + z = 9, 2x + 5y + 7z = 52 and 2x + y z = 0.

The End

Linear algebra - I 2080