Mid-West University **Examinations Management Office** End Semester Examinations -2080

Bachelor level/ B. Sc /6th Semester Time: 3 hours

Full Marks: 100 Pass Marks: 50

Subject: Discrete Mathematics (Math461)

Condidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

GROUP A

[6(2+2)=24]

- 1) a) Define even number. Prove that for all natural numbers $n, n^2 + n$ is an even number.
 - b) Define odd number. Show that 17 is a prime number.
- 2) a) Let Dn denote natural number that divide n then find D60 U D75 and D60 0 D75.
 - b) Show that $\sim p \vee q$ and $p \Rightarrow q$ are logically equivalent.
- 3) a) Prove that a natural number is a multiple of 12 if and only if it is a multiple of 3 and a multiple of 4.
 - b) For any $a, b, c \in \mathbb{N}$, if a < b then a + c < b + c.
- 4) a) The formula f(n) = 2n defines a function $f: N \to N$. Prove that f is injection but not surjection.
 - b) Prove that if $X \subseteq Y$ and X is infinite then Y is infinite.
- 5) a) Find the positive integer r and s such that $\frac{r}{s}$ is equal to $0.100\overline{17}$.
 - b) For any $x, y, z \in \mathbb{Z}$, prove that x (y z) = (x y) + z.
- a) Show that √3 is irrational number.
 - b) Show that $\binom{n}{k} = \binom{n}{n-k}$ for $0 \le k \le n$.

[13x4=52]

 Prove that there is no greatest natural number. For any natural number n, $n^2 + 7n + 12$ is an even number.

- 8) Define Conjuction and disjunction. Construct the truth table of $p \Rightarrow \sim q \land \sim \tau$
- 9) Use method of induction show that, $\sum_{r=1}^{n} r(r+3) = \frac{1}{3}n(n+1)(n+5)$
- 10) Define least member of $X \subseteq \mathbb{N}$. If subsets of X_1, X_2 of \mathbb{N} has least member then $X_1 \cup X_2$ and $X_1 \cap X_2$ have least member.
- Define injection and surjection functions. A function $g: \mathbb{N} \to \mathbb{N}$ defined by g(g(x)) = x. Prove that g is bijection. but not surjection.
- 12) If $x \setminus 0$ for all $x \in Z$ but $0 \setminus x$ only when x = 0 and, if p and p' are prime and
- $p \backslash p'$, then, prove p = p'. 13) Define cardinality of a set. Let m be a natural number, then every natural number n, there is an injection from N_n to N_m then $n \le m$.
- 14) Show that if $c \setminus a$ and $c \setminus b$, then $c \setminus xa + yb$ for any integer x, y. If x and y are non-zero integers such that $x \setminus y$ and $y \setminus x$ then either x = y or x = -y.
- 15) Define countable set. Prove that set of real number is not countable.

Prove that the set of rational number is countable.

- 16) Let S_n be set of permutations of $\{1, 2, ..., n\}$, then (i) if $\pi, \sigma \in S_n$ then $\pi \sigma \in S_n$ (ii) if $i \in S_n$ be identity function then for $\sigma \in S_n$ $i\sigma = \sigma i = \sigma$.
- 17) For any positive integers m and n, prove that

$${\binom{m-1}{0}} + {\binom{m}{1}} + \dots + {\binom{m+n-2}{n-1}} + {\binom{m+n-1}{n}} = {\binom{m+n}{n}}.$$
OR

Define Mobius function. Let g be a function defined on N and function fdefined as $f(n) = \sum_{d \mid n} g(d)$ then $g(n) = \sum_{d \mid n} \mu(d) f\left(\frac{n}{d}\right)$.

18) Define partition of a set. Let S(n,k) be partition of a n-set X into k parts, show

that
$$S(n, 2) = 2^{n-1} - 1$$

19) Define invertible element of \mathbb{Z}_m . If y is invertible in \mathbb{Z}_m then $y^{\varphi(m)} = 1$ in

20) Define principle of induction. Prove that if $x_1 = 3$, $x_2 = 5$, [4x6=24]

 $x_{n+1} = 3x_n - 2x_{n-1}, \forall n \ge 2, then x_n = 2^n + 1, \forall n \in \mathbb{N}.$

21) If p is a prime and $x_1, x_2, ..., x_n$ are any integers such that $\frac{p}{x_1 x_2 x_n}$