Mid-West University

Examinations Management Office

End Semester Examinations-2080

Bachelor level/ B.Sc /6th Semester

Time: 3 hours

Subject: Solid State Physics (PHY463)

Full Marks: 100

Pass Marks: 50

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Physical constants with their units

Planck's constant $h = 6.62 \times 10^{-34} Js$, Speed of light in vacuum $c = 3 \times 10^8 \text{ m/s}$, Charge of electron $e = 1.6 \times 10^{-19} \text{ C}$ Mass of electron = $9.1 \times 10^{-31} kg$, $I a.m.u. = 1.67 \times 10^{-27} kg$, Boltzmann constant $k_B = 1.4 \times 10^{-23} J/K$

Group-A

1) Answer in short any EIGHT questions

[8x2=16]

- a) Describe the structure of NaCl.
- b) Define Current density of electron in metal.
- c) State Wiedemann-Franz law.
- d) Write the short notes on energy band gap of semiconductor at absolute zero temperature.
- e) Explain the ferromagnetic material.
- f) What are the recent applications of superconductors?
- g) Explain the role of electron in conductor?
- h) What is isotope effect?
- Difference between elastic and plastic material?
- What is metallic bond?

Group-B

2) Answer in brief any SIX questions

[6x6=36]

- i. What is lattice? Calculate the atomic radii of all the three types of cubic crystals. .
- ii. Define specific heat and derive an expression for the lattice specific heat capacity by Debye model.
- iii. Explain the specific heat of a superconducting material in its normal and superconducting state.
- iv. Derive an expression for density of states and Fermi energy.
- v. Discuss the spontaneous magnetization and domain structure.
- vi. What is Hall voltage? Derive an expression for Hall constant.
- vii. Explain briefly the mechanism of covalent and hydrogen bonding.

Group-C

3) Discuss the Langevin's theory of diamagnetism and derive an expression for magnetic susceptibility. [9]

Define periodic potential and explain the band structure in solids. 4) State and explain the Kronig-Penny model for the band structure of solids.

[9]

5) Explain the Meissner and isotope effect.

- [6] 6) Define elastic constants. Derive an expression for vibrations of one dimensional diatomic linear lattice. [6]
- 7) Iron crystallizes in bcc structure. Calculate the lattice constant, given that a density of 7860 kg/m³ and an [6] atomic weight of 55.85gm respectively.

8) The Lead superconductor with $T_C = 7.2$ K has a critical magnetic field of 6.5 x 10^3 A/m at absolute zero. What would be magnitude of critical magnetic field at 5K temperature? [6]

9) The drift velocity of the electron in a copper wire of cross-sectional area 10 mm³ when the wire carries a current of 100 A. Assume that each copper atom contributes one electron to the electron gas. [6]