Mid-West University

Examinations Management Office

End Semester Examinations-2080

Bachelor level/ B. Sc/ 6th Semester

Full Marks: 100 Pass Marks: 50

Time: 3 hours
Subject: Advance Chemistry IV (CHEM463)

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks

Inorganic Chemistry Group A

Attempt any SEVEN questions

[7x2=14]

- 1. Differentiate between inert and labile complex.
- 2. Define EAN rule.
- Write the structure of following complex.
 a) [Co(NH₃)₃Cl₂NO₂]Br₃

b) K4[Fe(CN)6]

- 4. Write the isomer of the Cr(en)3.
- 5. Define coordination compound with respect to double salt.
- 6. Write the limitation of valence bond theory.
- [Co(CN)₆]³⁻ ion is diamagnetic while [CoF₆]³⁻ is a high spin complex. Give reason
- 8. Write the role of sodium in biological system.
- 9. Give short acquaintance towards thermodynamic stability of complex.

Group B

- 10. Explain the postulates of crystal field theory with suitable example. [7]
- 11. Explain the role of trace element in biological system. Draw the structure of hemoglobin and focus on the importance of iron atom? [6]
- 12. What are the main assumption of valence bond theory? Relate the valence bond theory with complex compound with suitable example.

 [6]

OR

Write short notes:

- a) Inner orbital and Outer orbital octahedral complex
- b) Crystal field splitting energy in complex

Organic Chemistry Group A

Attempt any SEVEN questions

[7x2=14]

- In carbon-carbon bond forming reactions, active methylene compounds (AMC) play vital role. Define such compounds with at least two examples.
- 2. Sketch the plausible mechanism of the reaction given below.

- 3. What is meant by C-alkylation and O-alkylation?
- Predict the major products X and Y in the following halogenation reaction.

I.
$$C_6H_5CH$$
 = CHCHO CH_3COOH X

II. H_2C = CH_3 CH_2CH_2 $CHCl_3$ $CHCl_3$

- Draw the synthetic route of 4-Methylpentan-2-one by acetoacetic ester synthesis.
- 6. Identify (P) and (Q) in the following reactions.

(P)
$$\frac{\text{NaH/25 °C}}{\text{CH}_3\text{Br}}$$
 $\frac{\text{LDA/-78 °C}}{\text{CH}_3\text{Br}}$ (Q)

- Give the substrate and the reagent for Perkin condensation. Write an example of this reaction.
- 8. Outline the synthesis of Pentanoic acid from Diethylmalonate (DEM).

9. Longifolene is a naturally occurring tricylic sesquiterpene. Its synthesis involves Michael addition. Give an example of Michael addition reaction.

Group B

10. What are enolates? Explain the thermodynamic and kinetic enolates along with the factors that favour to their formation. [2+3+2]

11. Give your acquaintance with

[3.5+3.5]

- a) Friedel Craft acylation
- b) Diels-Alder reaction
- 12. Discuss aldol condensation (acid and base catalyzed both)

What is caryophyllene? Outline its synthesis.

[1+5]

[3+3]

Physical Chemistry

Group A

Attempt any SEVEN questions

[7x2=14]

- 1. State that third law of thermodynamics. What is its significance?
- 2. What do you mean by entropy of mixing?
- 3. Write down the properties of equilibrium constant.
- Give the criteria of spontaneity in terms of Gibbs free energy change.
- 5. How does free energy vary with temperature and pressure?
- 6. What is the physical significance of work function?
- 7. Calculate the amount of heat supplied to Carnot cycle working between 150K and 300K, if the work obtained by the cycle is 450J.
- 8. What is reaction isotherm?
- 9. Prove that

$(\partial (\Delta G/T)/\partial T) P = -\Delta H/T^2$

Group B

10. Derive the Gibbs Helmholtz equation.

- [6]
- 11. Derive Clausius -Clapeyron equation. What are its applications?
- 12. Derive an expression for entropy change of an ideal gas when the temperature changes from T_1 to T_2 and pressure changes from P_1 to P_2 . Calculate the change in entropy when 2 mole of an ideal gas are heated

from 63°C to 273°C at a constant pressure of 1 atm. The molar heat [6+2=8] capacity of the gas is 23.7JK-1 mol -1

State the second law of thermodynamics. Discuss thermodynamic principle of the working refrigerator.

THE END